INTERNATIONAL JOURNAL OF

SOLIDS and
STRUCTURES

www.elsevier.com/locate/ijsolstr

PERGAMON International Journal of Solids and Structures 38 (2001) 657-683

A self-consistent Eulerian rate type model for finite
deformation elastoplasticity with isotropic damage

O.T. Bruhns *, H. Xiao, A. Meyers

Institute of Mechanics, Ruhr-University Bochum, Universitatsstrasse 150, Gebaude 1A, Raum 3/26, D-44780 Bochum, Germany
Received 12 May 1999; in revised form 8 March 2000

Abstract

Continuum models for coupled behaviour of elastoplasticity and isotropic damage at finite deformation are usually
formulated by first postulating the additive decomposition of the stretching tensor D into the elastic and the plastic part
and then relating each part to an objective rate of the effective stress, etc. It is pointed out that, according to the existing
models with several widely used objective stress rates, none of the rate equations intended for characterizing the
damaged elastic response is exactly integrable to really deliver a damaged elastic relation between the effective stress and
an elastic strain measure. The existing models are thus self-inconsistent in the sense of formulating the damaged elastic
response. By consistently combining additive and multiplicative decomposition of the stretching D and the deformation
gradient F and adopting the logarithmic stress rate, in this article, we propose a general Eulerian rate type model for
finite deformation elastoplasticity coupled with isotropic damage. The new model is shown to be self-consistent in the
sense that the incorporated rate equation for the damaged elastic response is exactly integrable to yield a damaged
elastic relation between the effective Kirchhoff stress and the elastic logarithmic strain. The rate form of the new model
in a rotating frame in which the foregoing logarithmic rate is defined, is derived and from it an integral form is obtained.
The former is found to have the same structure as the counterpart of the small deformation theory and may be ap-
propriate for numerical integration. The latter indicates, in a clear and direct manner, the effect of finite rotation and
deformation history on the current stress and the hardening and damage behaviours. Further, it is pointed out that in
the foregoing self-consistency sense of formulating the damaged elastic response, the suggested model is unique among
all objective Eulerian rate type models of its kind with infinitely many objective stress rates to be chosen. In particular, it
is indicated that, within the context of the proposed theory, a natural combination of the two widely used decompo-
sitions concerning D and F can consistently and uniquely determine the elastic and the plastic parts in the two de-
compositions as well as all their related kinematical quantities, without recourse to any ad hoc assumption concerning a
special form of the elastic part F® in the decomposition F = F°F® or a related relaxed intermediate configuration. As an
application, the proposed general model is applied to derive a self-consistent Eulerian rate type model for void growth
and nucleation in metals experiencing finite elastic—plastic deformation by incorporating a modified Gurson’s yield
function and an associated flow rule, etc. Two issues involved in previous relevant literature are detected and raised for
consideration. As a test problem, the finite simple shear response of the just-mentioned model is studied by means of
numerical integration. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It is widely recognized that in a deforming material body, evolution of microstructure, such as micro-
defects, microvoids and microcracks, etc. is the main cause leading to irreversible inelastic deformations.
On the other hand, deformation, in particular large deformation, usually causes changes of microstructure
in a material body. The actual coupling mechanism between the process of deformation and the evolution
of microstructure may be extremely complicated in nature. In an idealized and simplified sense, a macro-
scopic scalar variable ¢ called damage variable, among other things, may be introduced to represent the
state of microstructure and is directly associated with pertinent mechanical quantities, such as the stress, the
material moduli, etc. Then, a phenomenological model for the foregoing coupling mechanism may be es-
tablished by formulating the evolution equation of the damage variable ¢ and other relevant rate type
constitutive equations. Since the inception of the seminal idea by Kachanov (1958), the very promising
branch of continuum mechanics, continuum damage mechanics, has been developing extensively and steadily
and receiving increasing applications in numerous related fields, refer to, e.g. Kachanov (1986), Krajcinovic
and Lemaitre (1987), Chaboche (1988), Lemaitre and Chaboche (1990), Lemaitre (1992), Krajcinovic
(1996) and the relevant literature therein for details.

At the present stage of development, a set of damage variables and other internal variables of scalar type
and tensorial type are introduced to characterize the state of microstructure of a material in a more realistic
manner and more general models are accordingly developed, see the aforementioned monographs and
recent works by, e.g., Onat and Leckie (1988), Bruhns and Diehl (1989), Voyiadjis and Kattan (1992a,b),
Lubarda (1994), Lubarda and Krajcinovic (1995), and Bruhns and SchieBe (1996), and others. This general
aspect is still under continuing development. In this article, we are mainly concerned with the classical
aspect, i.e. the isotropic damage with one scalar damage variable ¢. This aspect has been fully studied with
reference to both small and finite deformation due to its simple, clear and direct physical meaning. Now, it
may be said that isotropic damage theories with reference to small deformation are well established on firm
mathematical and physical foundations. However, the case might not be so when large deformation is
concerned. In fact, even the existing formulations of finite deformation elastoplasticity are somewhat
controversial and a number of fundamental issues between them have been indicated and extensively de-
bated (see, e.g., the recent comprehensive review by Naghdi (1990) and the pertinent references therein for
detail). As a result, finite deformation elastoplastic damage theories based on them are accordingly subject
to the same issues.

Based on some recent developments in kinematics of finite deformation and rate type constitutive models
by these authors and other researchers (see Bruhns et al., 1999; Xiao et al., 1996, 1997a,b, 1998a,b, 1999,
2000; Lehmann et al., 1991; Reinhardt and Dubey, 1995, 1996), we shall establish a general Eulerian rate
type model for finite deformation elastoplasticity coupled with isotropic damage, with which the main
fundamental discrepancies involved in existing formulations of finite elastoplasticity disappear. The main
content of this article is arranged as follows: In Section 2, for later use we introduce the newly discovered
logarithmic rate and the rotating frame in which the latter is defined, as well as other basic facts regarding
kinematics of finite deformations of continua. In Section 3, postulating the additive decomposition of the
stretching D and adopting the logarithmic rate, we establish a complete system of Eulerian rate type
constitutive equations governing the coupled behaviour of finite elastoplasticity and isotropic damage. It is
pointed out that the logarithmic rate is a unique choice among all infinitely many objective corotational
rates, in the self-consistency sense of achieving an integrable-exactly rate type formulation of damaged
elastic response. In Section 4, the elastic and the plastic part in the decomposition F = F°F? and all their
related kinematical quantities are uniquely and consistently determined. In Section 5, we supply the rate
form of the suggested constitutive formulation in a rotating frame in which the logarithmic rate is defined
and then derive an integral formulation. Some implications of the results obtained are indicated. In Section
6, incorporating a modified Gurson’s yield function and an associated flow rule, etc. we apply the general
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model proposed in Section 3 to derive a self-consistent Eulerian rate type model for void growth and
nucleation in porous metals at finite deformation. Two issues involved in previous relevant literature are
detected and raised for consideration. Finally, in Section 7, we study the finite simple shear response of the
model established in Section 6 by means of numerical integration.

Let Q, A, B and H be, respectively, an orthogonal tensor, two second-order tensors and a fourth-order
tensor. We shall use the notations A : B, AB, Q x A, H : A and Q * H to designate, respectively, the scalar,

the three second-order tensors and the fourth-order tensor given by

i
(AB),, = 4By,

(Q*A),; = 0u0du,

(H:A), = Hyudu,

(Q H)ijk] = 050 O O1sH pgrs-

The following identities will be useful:

(QxA): (Q*B)=A:B,

(QxH): (Q*xA)=Q=x(H:A).

2. Logarithmic rate and logarithmic rotating frame

Consider a deforming body with particles. We identify each particle with a position vector X in a ref-
erential configuration, e.g. an initial configuration. The current position vector of a particle X is denoted by
x = X(X, #), and hence the velocity vector of a particle X is given by v = x. Throughout, the superposed dot
is used to represent the material time derivative.

The local deformation state at a particle X is described by the deformation gradient

ox
F=_—_
ox’
while the rate of change of deformation state at a particle X is characterized by the velocity gradient
ov .
L=_—-=FF"
ox

The following left polar decomposition formula and additive decomposition formula are well known:

F=VR, R"=R! B=V=FF,

L=W+D, W=4L-L"), D=LYL+L").

The symmetric positive definite tensors V and B are known as, respectively, the left stretch tensor and the
left Cauchy—Green tensor, the proper orthogonal tensor R is the rotation tensor, and the symmetric and
antisymmetric tensors D and W are called the stretching and the vorticity tensor. Throughout, ST and S~
are used to denote the transpose and the inverse of the second-order tensor S.
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Let the distinct eigenvalues of the left Cauchy—Green tensor B be given by y,,..., %, and their corre-
sponding subordinate eigenprojections by By,...,B,. We introduce a general class of Eulerian strain
measures by (see Hill, 1978; Ogden, 1984; see also Xiao et al., 1998a)

e=gB) =Y ¢(1)B.. (1)

where g: R — R, called scale function, is a smooth monotonic increasing function with the normalized
property g(1) = 2¢’(1) — 1 = 0. Taking the scale function g() as certain particular forms, one can obtain
almost all commonly-known Eulerian strain measures. In particular, by taking g(y) = %ln 1, Hencky’s
Eulerian logarithmic strain measure

h=1InB=1> (Iny,)B, (2)
a=1

is available, which will be of particular interest.

On the other hand, let 2" be a spin, i.e. a time-dependent antisymmetric second-order tensor. In a
rotating frame with the spin £°, an objective Eulerian symmetric second-order tensor S in a fixed back-
ground frame, becomes QSQT, and hence its time rate in this rotating frame is given by

(QSQ") =QSQ" +QSQ" +QSQ" =QS'Q". (3)
In the above, Q is a proper orthogonal tensor defining the spin Q7 i.e.

and moreover

S =$1SQ - QS. (5)

It follows from Eq. (3) that the latter, called the corotational rate of the tensor S defined by the spin Q7, is
just the counterpart of the time rate of QSQ" in a background frame. It is evident that there are infinitely
many kinds of corotational rates. Not all of them, however, are objective. A well-known example of ob-
jective corotational rate is provided by the Zaremba—Jaumann rate with 2° = W, and another well-known
example is given by the Green—Naghdi rate with the polar spin 2° = RR'. In general, the objectivity of a
corotational rate depends on its defining spin tensor. The latter must be associated with the rotation and
deformation of the deforming body in question, as is shown by several commonly known examples. A
general class of objective corotational rates and their defining spin tensors have been derived by these
authors (Xiao et al., 1998Db).

It is commonly accepted that the stretching tensor D, the symmetric part of the velocity gradient, is a
well-defined fundamental kinematic quantity measuring the rate of change of local deformation state in a
deforming body. It is frequently referred to as the Eulerian strain rate, the tensor of deformation rate, or
simply the deformation rate. However, it has long been unknown whether or not the stretching can be really
written as a rate of a strain measure. The pertinent question is: whether or not a strain measure e and a spin
0" can be found such that the objective corotational rate of e defined by Q" is exactly identical with the
stretching tensor D, i.e.

e =é+eQ —Qe=D. (6)

It turns out (see Xiao et al., 1996, 1997a, 1998a) that the above expression, where both the strain measure e
and the spin 2" are left to be determined, holds iff the strain measure e is the logarithmic strain h given by
Eq. (2), i.e.
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g(x) =3ln 7. (7)

When e = h, the linear tensor equation (Eq. (6)) has a unique continuous solution to the spin ", denoted
by 2"°¢ and given by (see Xiao et al., 1996, 1997a, 1998a)

log __ - 1 + (XU/X‘L’) 2
Q=W (7 iy PP ®)

An explicit basis-free expression for 2'°¢ can be found in Xiao et al. (1996, 1997a, 1998a). Owing to the

unique relationship between the stretching D and the logarithmic strain h indicated, the spin 2'°¢ has been

termed the logarithmic spin and accordingly the objective corotational rate defined by it the logarithmic rate.
The logarithmic rate of an Eulerian symmetric second-order tensor S is denoted by S'°¢, i.e.

Sl = § | sl _ gloeg, 9)

In particular, we have

h°: = D, (10)

Let R be the proper orthogonal tensor defining the logarithmic spin €'°¢, which is called the logarithmic
rotation and determined by the tensor differential equation

SE__ glorgis )
with the initial condition

R“¢ |_o=1 (12)
Then we have (cf. Egs. (3) and (4))

(R +'S) = R » S"2 (13)

for any Eulerian symmetric second-order tensor S. In particular, by setting S = h in the above and using
Eq. (10), we have

(R xh) = R¢ « D. (14)
The logarithmic rotation R defines a rotating frame via the transformation of motion
xH(X, 1) = xo(t) + R2x(X, 7). (15)

This frame, whose spin is just the logarithmic spin 2'°¢ due to Eq. (11), is called the logarithmic rotating
frame. The equality (Eq. (14)) indicates a kinematical feature of the logarithmic rotation or the logarithmic
spin: An observer in the logarithmic rotating frame observes that the material time derivative of Hencky’s
logarithmic strain measure is just the stretching.

Thus, the logarithmic rotation is associated with the deformation and rotation in a deforming body in a
unique manner. [t is evident that such an association is purely of kinematical character and independent of
any material behaviour.

Lehmann et al. (1991) were the first to consider the particular case of the tensor equation (Eq. (6)) when
e = h and introduce the logarithmic spin ©'°%. Similar results were derived later by Reinhardt and Dubey
(1995, 1996). In a different context, these authors (Xiao et al., 1996, 1997a, 1998a) studied the general case
of tensor equation (Eq. (6)) with both the strain measure e and the spin 2" left to be determined and re-
vealed the unique relationship between the stretching D and the logarithmic strain h for the first time. The
significance of the logarithmic rate to formulating Eulerian rate type inelasticity models has been indicated
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in very recent works by these authors (Bruhns et al., 1999; Xiao et al., 1997a,b, 1999, 2000). Based on these
results, in the succeeding sections we shall develop new Eulerian rate type models for finite deformation
elastoplasticity coupled with isotropic damage.

3. Eulerian rate type constitutive formulation

We consider a damaged elastoplastic solid with an initial stress-free natural state %, and with initial
isotropy material symmetry. The initial natural state is taken as the reference configuration. Accordingly,
we have the initial conditions

F |,:0: I7 T |,:0: 0. (16a,b)
Here and henceforth, t is used to denote the Kirchhoff stress, which is related to the Cauchy stress ¢ by
7 = (det F)o.

We assume that the damage variable is a scalar variable ¢ whose value belongs to the interval [0, 1]. Then
we define the effective Kirchhoff stress as follows:

T

1—¢°
As commonly done (see, e.g., Nemat-Nasser, 1979, 1982), we assume the additive decomposition of the
stretching D:

D = D¢ + D, (18)

(17)

T =

We call D° and D the elastic part and the coupled elastic—plastic part of D. Another widely used de-
composition is the multiplicative decomposition of the deformation gradient F (see Eq. (38) given later). A
natural and consistent combination of the two kinds of widely used decompositions will be given in the
Section 4. It will be seen that the elastic part D° of D is related to the elastic part F° of F (see Eq. (42a), while
D is associated with both the elastic part F® and the plastic part F® of F (see Eq. (42b)).

In the succeeding subsections we shall establish Eulerian rate type constitutive formulations for the two
parts D° and D as well as the damage variable ¢ etc., respectively.

3.1. Integrable-exactly Eulerian rate type formulation of general damaged hyperelasticity

The elastic part D° is related to an objective rate, ‘%*, of the effective Kirchhoff stress 7 in a form
D°=D:7 (19)
or
T =C:D". (20)

In the above, the fourth-order tensor D or its inverse D~! = C characterize the instantaneous elastic be-
haviour of the material. Most often D is chosen as the constant isotropic compliance tensor, especially for
small elastic strain case. Hence,

11 1
D:(E—E)I®I+Eﬂ, (1)

where E and G are Young’s modulus and the shear modulus, respectively. Throughout, I and [ are used to
designate the second-order and the fourth-order symmetric identity tensor, respectively, i.e.
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(I),;/ = 0y, (H)ijk[ = 3(0udji + 0idy) (22)

with the Kronecker delta 6,,. .

In the rate equations (Egs. (19) or (20)), the choice of the objective rate 7* is crucial. It should be noted
that these equations are intended to characterize damaged elastic response. Namely, they must be exactly
integrable to really deliver a damaged elastic, in particular hyperelastic, relation. However, if special care is
not taken, the just-mentioned self-consistency requirement for rate-type characterization of damaged elastic
response may not be fulfilled and some aberrant, spurious phenomena, such as the oscillatory shear stress
response with increasing shearing strain, etc., may be resulted in, as disclosed by Lehmann (1972a,b),
Dienes (1979) and Nagtegaal and de Jong (1982), and others, for the case of hypoelasticity and elasto-
plasticity without damage. Further, Simé and Pister (1984) have proved that none of the rate equations
(Egs. (19) or (20)) with several commonly known stress rates, such as Zaremba—Jaumann rate, Truesdell
rate and Green—Naghdi rate etc., is integrable to yield an elastic, in particular hyperelastic, relation in
nonlinear range. This fact indicates that the existing formulations of Eulerian rate type elastoplasticity (and
accordingly elastoplasticity coupled with damage) are self-inconsistent in the sense of characterizing elastic
response.

The undesirable self-inconsistency indicated above has been removed in very recent works by these
authors for the case of hypoelasticity and elastoplasticity (see Bruhns et al., 1999; Xiao et al., 1997b, 1999).
Utilizing these results, we here propose the integrable-exactly Eulerian rate type formulation of general
damaged hyperelasticity as follows:

o*x Clog

e (23)
where ¥ = 3(z), which is an isotropic scalar function of the effective Kirchhoff stress , is called the effective
complementary hyperelastic potential. For small elastic strain, the gradient 0°Y /0t 0t may be taken as the
constant isotropic compliance tensor as shown by Eq. (21).

It will be shown in the next two sections that the rate equation (Eq. (23)) provides a consistent definition
for the elastic deformation rate D° and leads to a general damaged hyperelastic relation according to which
the elastic logarithmic strain measure h® (see Eq. (43)) is derivable from the potential & (7) with respect
to the effective Kirchhoff stress 7, as will be shown by Eq. (44). Hence, defining a scalar function X’ of h® via
the Legendre transformation relation

4+YX=7:h°

DC

and using the equality (see Eq. (44) given later)
. 0Y . .
2= 7 t=h:7

we deduce

3

E':(f:he)—Z:f:F.
Then, from the latter and 3’ = gTZ: : ﬁ, we infer
6_2’
oh®’
In addition, noting that h® is given by an isotropic function (see Eq. (44)) of T and hence that

7: (h°Q" — Qh°) = 2(h°z) : Q"¢ =0,

T =

and using the relationship (Eq. (45)), we have
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o

E/Zfzﬁzf:ﬁlog:f:De.

In the above, the last expression implies that the material time derivative of the scalar function X’ furnishes
the effective elastic stress power, whereas the equation relating T and h® shows that the effective Kirchhoff
stress 7 is derivable from the scalar function X’ with respect to the elastic logarithmic strain measure h°.
These facts explain why the scalar function X in Eq. (23) has been termed the effective complementary
hyperelastic potential.

The logarithmic stress rate used in the rate equation (23) is merely a particular objective stress rate
among infinitely many objective corotational stress rates (see Xiao et al., 1998a,b). Probably another ob-
jective corotational stress rate may serve our purpose just as well. Hence, by replacing the logarithmic stress
rate 7°¢ with another objective stress rate T one obtains another form of rate type equation for the elastic
part D° of D

2
D° = a_ Z_ LT
ot o7
The above-mentioned nonuniqueness, if any, will result in the puzzling situation concerning which stress
rate is better, as encountered in existing Eulerian rate type formulations of finite elastoplasticity (see Khan
and Huang (1995) for detail). Recently, these authors have demonstrated (see Bruhns et al., 1999; Xiao
et al., 1999) that the above rate equation is exactly integrable to deliver an elastic relation if and only if
the stress rate 7* is the logarithmic rate 7'°¢, i.e. the rate equation is identical with the rate equation (Eq.
(23)). This fact means that the rate equation (Eq. (23)) is unique among all the rate equations of its kind
with infinitely many objective corotational rates to be chosen, in the self-consistency sense of formulating
damaged elastic response.

3.2. Yield function, flow potential and flow rules

In addition to the damage variable ¢, we introduce a scalar k and an objective symmetric second-order
Eulerian tensor a as internal variables to characterize isotropic and kinematic hardening behaviours. The
tensor a is called the back or shift stress. We assume that the current yield surface in the stress space is
defined by

f=/f(r,0k ¢)=0. (24)

Here £ is an isotropic scalar function of the Kirchhoff stress and the back stress a. We further assume that
in the stress space there is another surface

g:g(‘ra“akvd))v (25)

such that the elastic—plastic part D’ of the stretching D is in the direction of the gradient of this surface
with respect to the Kirchhoff stress , i.e.

ep = —_—
=ik, (26)

Accordingly, g is called the flow potential, which is here also an isotropic scalar function of the Kirchhoff
stress and the back stress.

For a process of continued plastic flow, the stress point must remain on the current yield surface. Hence,
we have the consistency condition f = 0 for plastic flow. Since the yield function f'is isotropic, we have

f(r, ok, d) :f(Rl"g * T, R « ok, ).

Hence, we may write the just-mentioned condition in the form
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F(R®® % 7, R 5 o, k, ) = 0,
ie.

af+ f+ . af+ af+
e at 4+ DA

T e Xt gkt ag =0
where /* and t" and a* are, respectively, the counterparts of the yield function fand the Kirchhoff stress ©
and the back stress a in the logarithmic rotating frame, given by Egs. (59a) and (58) later. Hence, utilizing
the equality (Eq. (13)) and the equality following Eq. (67), as well as the penultimate identity in Section 1,
we formulate the consistency condition for plastic flow in a form convenient for later use:

O oo O goe Oy O

© © k = 0. 27

e T T Tk et (27)
Moreover, we assume general forms of evolution equations for the damage variable ¢, the isotropic
hardening parameter k and the back stress a for kinematic hardening as follows:

d=¢:D® k=Kk:D®? o°¢=H:DP,

ie.
..

b=ip:3, (28)
k=Jk:==> 29
o (29)

o ag

log H :

—H L (30)

Here, the objective symmetric second-order Eulerian tensors ¢ and k and fourth-order Eulerian tensor H
depend on 7, a, k and ¢, i.e.

d):qg(T?a?k?qs)’ k:R(r’a’k7¢)7 H:”:H(T’a?k’qs)? (31)

and each tensor-valued function above is isotropic with respect to ¢ and «. In addition, the fourth-order
tensor has minor index symmetry. Namely,

P(Qx1,Qxak, ) = Qx (Pp(t,a,k, ¢)), (32)

k(Qx1,Qxak, ¢)=Qx (k(r,ak ¢)), (33)

{ U:Hijkl = Hjik[ = Hijlk; R
H(Qx*7,Qx*ak,¢) =Qx (H(r,a, k, ¢)),

for every orthogonal tensor Q.
Utilizing Egs. (28)~(30), from the consistency condition (Eq. (27)) for plastic flow, we derive an ex-
pression for the plastic multiplier 4 as follows:

'__ia_f.olo
A= ﬁ@f.rg’

p=ge Mg+ (keh) + 55 (0 50)

where the loading—unloading indicator s is of the form (see Bruhns et al., 1999)

(34)

(35)
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0 iff<0orf=0and &7 <o,

v = (36)
I if f=0and &30 >0,
Combining Eqgs. (23) and (26) and (18), we arrive at
Fr o . 0g
_ . glog 4 7Y6
s - o (37)

The Eulerian rate type constitutive equations (28)—(30) and (35)—(37), together with Cauchy’s equations of
motion, constitute a complete system of equations governing the total kinematical quantities and the total
stress, etc. Of them, the basic elements are the complementary hyperelastic potential X, the yield function £,
the flow potential g and the constitutive tensors ¢, k and H. For various kinds of materials, the latter may
assume various forms. They must be determined by related experimental data. For example, various forms
of evolution equations for the damage variable ¢ are available in Lemaitre and Chaboche (1990). This
aspect can be simplified by using a yield function of von Mises type and the associated flow rule as well as
simple hardening relations, as will be done in Section 6.

4. Kinematical quantities related to the decomposition F = F°F?

The constitutive formulation proposed in Section 6, together with Cauchy’s equations of motion and
well-posed initial and boundary conditions, determine the total stress, the total kinematical quantities F and
L, as well as the elastic part D° and the coupled elastic—plastic part D, etc. On the other hand, for a
process of elastoplastic deformation, it is required to define and specify elastic and plastic deformations and
their related kinematical quantities. It should be noted that if there is no a priori definition for elastic
and plastic deformations, no definite information about the latter can be drawn from the rate quantities D°
and D®. On the contrary, D° and D need to be related to “elastic deformation” and “plastic deformation”
in an appropriate sense.

To introduce and separate elastic and plastic deformations, the physically motivated multiplicative
decomposition of the total deformation gradient is widely used, which was first introduced by Kroner
(1960) with reference to a linearized theory, subsequently utilized by Backmann (1964) and Willis (1969),
and systematically and extensively used and developed by Lee and other researchers, see, e.g., Lee and Liu
(1967), Lee (1969); see also, e.g., Lubarda (1994) and Lubarda and Krajcinovic (1995) for recent appli-
cations in continuum damage mechanics. According to this decomposition, the total deformation gradient
F has the multiplicative decomposition

F=FF°, detF° >0, detF°’ >0, (38)
for any process of elastic—plastic deformation. Usually, F® and F? are called, respectively, the elastic and the

plastic part of F.
The decomposition (38) produces

L = FF! + FRPRPIFe ! (39)
D = sym(FF!) 4 sym(FFPFP~'Fe 1), (40)
W = skw(FF!) + skw(FFPFP'Fe ). (41)

Here and henceforth we use the notations symA and skwA to designate the symmetric and the skew-
symmetric part of a second-order tensor A, i.c.
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symA =1(A+A"), skwA =1(A —AT).

Now, we proceed to establish the relationship between the two decompositions (18) and (38). Towards
this goal, let us compare Eqgs. (18) and (40). Clearly, the first term of the right-hand side of Eq. (40) relies on
the elastic part F° only, whereas the second term depends on both the elastic and the plastic part F¢ and FP.
Thus, a natural, direct relationship between the two decompositions (18) and (38) should be

D° = sym(F°F!),  DP = sym(FFPFP'F 1), (42a,b)

In the above two relations, the former implies the latter and vice versa. The right-hand side of the latter
explains why D has been termed the coupled elastic—plastic part of D before.

Consider the constitutive formulation (23) for the elastic part D of the stretching D. As pointed out
before, the rate equation (23) should be exactly integrable to produce a damaged elastic relation. Define the
elastic logarithmic strain measure h° by

h* = lIn(F°F"). (43)
Generally, we may assume that the foregoing damaged elastic relation is of the form
0
h®) = —.
W) = =

Now, we prove that (h°) is exactly h®. In fact, for each process of purely elastic deformation, i.e., F* = F,
we have h° = h and D° = D. Then, Eq. (23) and the foregoing relation become

PE oy 0z
:—:70 h :—_
mor | v(h) ot

Hence we infer

D

o

() =D.

Since the potential X = 2(%) is isotropic, the gradient /0% and hence ¥ (h) are also isotropic. Applying
the chain rule for the gradient of a symmetric second-order tensor-valued isotropic function derived in Xiao
et al. (1999), from the last equality we deduce

a'/' . O10g _
o h°¢ = D.
Thus, from the latter and the formula (Eq. (10)), we derive
oy
"

i.e., Y(h) = h and hence ¥(h®) = h°. From the above account, it follows that the elastic relation assumed
before must take the form

)
h®=—. 44
ot (44)
This and the rate equation (23) result in the relationship
D¢ =hee. (45)

This means that the elastic part D° of the total stretching D is just the logarithmic rate of the elastic log-
arithmic strain measure h®. Further interpretation of this relationship will be given in Section 5.
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Furthermore, as has been indicated in Xiao et al. (2000), the above established relationship between the
two widely used decompositions (18) and (38) can consistently and uniquely determine the elastic part F°
and the plastic part F® in the decomposition (38), as well as all their related kinematical quantities, with no
ad hoc assumption about restricted special forms of F¢ and/or F”. Indeed, from the outset of this section we
know that the effective Kirchhoff stress 7, the total deformation gradient F, the total velocity gradient L,
and the two parts D° and D of D, can be obtained by integrating the constitutive equations (28)—(30),
(35)—(37) and Cauchy equations of motion with well-posed initial and boundary conditions. Then, the
elastic deformation F° = V°R® over a time interval [0, a] is consistently and uniquely determined by V° and
D¢ given over [0, a], where the elastic stretch tensor V¢ = VF°F! is determined by (see Eq. (44))

V¢ =exp <%§), (46)

and the elastic rotation R® is obtained by integrating the linear tensorial differential equation (see Eq. (61) in
Xiao et al. (2000))

R° = Q°R°, R*,_, =1, (47)
with (see Eq. (64) in Xiao et al. (2000))
. 20008 1
Q° — Qlog _ ot cDeVE. 4
;(iiz—iﬁz—i_lnii—ln/ﬂu:)v” V‘r ( 8)
In addition, we have
. m € ;\‘e
Ve — Qlogve . Vteog Ay T VEDeVE, 49
Jr(;lnii—lnﬂ,j D Ve (49)
In the above, A7 and V¢, 6 = 1,...,m, are the distinct eigenvalues of the elastic stretch V* and the corre-

sponding subordinate eigenprojections of V¢, respectively.
Once the elastic deformation F° is available, one can immediately obtain the plastic deformation F® by

FF =F'F. (50)
Now we consider the rate quantities related to F® and FP. Let

L° = FF (51)

LP = FPFP ! (52)

Then, we have

L® = sym(FF ') + skw(FF') = D° + W°, (53)
where D¢ is given by Eq. (23) and W° by

W = skw(FF!) = skw(VeVe! 4 veQeye), (54)

where V¢, V¢ and Q° are, respectively, given by Egs. (46), (49) and (48). Moreover, from Egs. (39) and (51)—
(53), we derive

L’ =F '(L-L)F =F (L — D° — W°)F". (55)
Hence, we have

DP = sym LP = sym(F~' (L — D° — W°)F°), (56)
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WP = skw LP = skw(F*" /(L — D* — W)F°). (57)

From the above analysis, we conclude that, within the context of the finite deformation elastoplasticity-
damage theory suggested in this and the last sections, the elastic deformation F° and the plastic deformation
F? and all their related kinematical quantities such as the spins W® and WP, etc. can be consistently and
uniquely determined. Moreover, it is shown in Xiao et al. (2000) that in a full sense the proposed com-
bination of the two widely used decompositions concerning the total stretching D and the total deformation
gradient F obeys the invariance requirement under the change of frame or under the superposed rigid body
rotation.

5. Rate type and integral type constitutive formulations in the logarithmic rotating frame

In the logarithmic rotating frame specified by Eq. (15) an objective scalar keeps unaltered, whereas an
objective symmetric second-order tensor A becomes R x A. In this section, we denote
A" R A )
Moreover, we denote
fr=faat k), gt =gt at k),
¢+ = ¢A(‘E+,d+,k, ¢)7 k' = k( “ k ¢) (59a,b,c)
H" = H(t", 2", k, ).
The Eulerian rate type constitutive formulation proposed in Section 3 is frame-indifferent, and hence, its

form in the logarithmic rotating frame specified by Eq. (15) remains the same. Consequently, in the log-
arithmic frame Eqs. (28)—(30) and (37) become

+
= ot 0
b=ip (60)
. . ag+
_ Ot
o og™
lo; + .
dogt = JH A
ozt ogt
D+ — . —log+
ot+ort e ort
Applying Egs. (58), (13) and (14), we rewrite the last two equations into the forms
- . ag+
T = HT 2 2
x = (©2)
— 65* ;0g"
+ _
h™ = (F) + A Pt (63)
Moreover, the plastic multiplier 4 given by Eq. (35) becomes
i=_¥ ﬁ -,
b o (64)

B = 2§+ H+.a_ aL(k+.6g) Ld)(¢+ )
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where

Y= )

+
it fr=0and ¥o77>

Egs. (60)—(65) supply the forms of the rate constitutive equations (28)—(30) and (35)—(37) in the logarithmic
rotating frame. It turns out that the rate equations (60)—(65) have the same structure as the counterpart of
small deformation elastoplastic damage theory. Indeed, whenever the deformation is small, the logarithmic
strain measure h and the logarithmic rotation R' approximate to the small strain measure € and the
identity tensor I, respectively, and accordingly the quantities t© and a* and h* to 7 and « and e, respec-
tively. With these approximations Egs. (60)—(65) are reduced to the rate constitutive equations for small
deformation elastoplastic damage.

Owing to the fact indicated above, the numerical integration of Egs. (60)—(65) formulated in the loga-
rithmic rotating frame may be carried out by means of the numerical methods developed for small de-
formation theory. Then, the quantities in the current configuration are available from the corresponding
quantities in the logarithmic rotating frame and the logarithmic rotation R'°¢, the latter being obtained by
integrating Eq. (11) with the initial condition (12).

In addition, in the logarithmic rotating frame, Egs. (14) and (45) are of the forms

N + af+.;
0 if ff<Oorf —Oanda—+.‘c+<0,
‘ (65)
0.

h* = D, (66)

bt = D, (67)
The former, being a rigorous kinematical relation, simply means that in the logarithmic rotating frame the
total stretching is exactly the material time derivative of the total logarithmic strain measure, whereas the
latter, which defines the elastic part D° of the total stretching D, implies that in the logarithmic rotating
frame, the material time derivative of the elastic logarithmic strain measure supplies the elastic part of the
total stretching. These show that the relationship (45) is a natural and consistent definition motivated by
and based on the rigorous kinematical relation (14).

Finally, integrating Egs. (60)—(65) over the time interval [0, 7] and using the equalities

O e Oh

g*Rog*aa h:fvgvza

AT =R %A, A=¢kH,

as well as the last two identities in Section 1, the initial condition (16) and « |,-o= O, we arrive at

t
LB
¢ = ¢|,:0+/0 o aé ds, (68)
t
k= i )k:g—‘ids, (69)
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Through the logarithmic rotation R, the above integral type formulation indicates, in a clear and direct
manner, the effect of the finite strain and rotation history on the current stress, the damage and the
hardening behaviour.

6. A model for void growth and nucleation in metals

In this section, we apply the general model established in the previous sections to derive a model for void
growth and nucleation in porous metals at finite deformations. In this case, the damage variable ¢ is in-
terpreted as the void volume fraction.

Based on certain simplified assumptions, Gurson (1977) was the first to establish a continuum model for
void growth and nucleation in porous ductile media with perfectly plastic matrix. Gurson’s model was
modified and developed later by various researchers, refer to, e.g. Tvergaard (1982a,b), Tvergaard and
Needleman (1984), and Meer and Hutchinson (1985). This aspect is mentioned in the review articles by
Neale (1981) and Nemat-Nasser (1992) and discussed by Voyiadjis and Kattan (1992a,b) (some relevant
remarks on the latter will be made at the end of this section). Taking these subsequent modifications into
account, we here assume a modified form of Gurson’s yield function as follows (cf. Eq. (89) in Voyiadjis
and Kattan 1992a):

F=3 =0 o) 2paipen( 30 ) - a1+ 020, (72
2 20F

where 7’ is the deviatoric Kirchhoff stress, of is the flow yield strength of the metal matrix at uniaxial tensile

test, and ¢; and ¢, are the two modified material parameters introduced by Tvergaard (1982a,b) and

Tvergaard and Needleman (1984). Moreover, the back stress, which defines the centre of the current yield

surface, i1s assumed to be traceless, i.e.

tra = 0. (73)

Throughout, chx and shx are used to denote the hyperbolic cosine and sine functions of x.
As commonly done, we assume an associated flow rule and the kinematic hardening rule of Prager—
Ziegler’s type. Thus, we have f = g and

o

€°¢ = je(t — a), (74)

with ¢ being a kinematic hardening parameter. It is easy to demonstrate that this is just a particular form of
the general evolution equation (30). Besides, the flow rule (26) becomes

o

D = ;L.
ot

(75)

Usually, the elastic strain in a metal matrix is small. In this case, we can take the gradient 8°X /0t 07 as
the constant isotropic compliance tensor given by Eq. (21). Hence, Eqgs. (23) and (44) for the damaged
elastic response become

o

D* =D : 7, (76)

D
i
where D is given by Eq. (21).

h=D:7 | T, (77)
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During the course of deformation, both the growth of existing voids and the nucleation of new cavities
contribute to the change of the void volume fraction ¢. Following Needleman and Rice (1978), we assume
the evolution equation of the void volume fraction ¢ as follows:

¢ = (1 — P)trD® + AG. (78)
In the above, the first term of the right-hand side arises from the contribution of the void growth and the
second term from the contribution of the void nucleation, with A4 being a material parameter. Here, we
assume that the void nucleation is correlated directly with the flow yield strength o.
On the other hand, from the equivalence of the overall rate of plastic work and that in the matrix
material the following relation is derived (see Egs. (2.38b) and (2.36¢) given in Nemat-Nasser (1992)):

o 7 : D® o 0 of
GF_bGY_(S(l—qS)aF_A(l—qS)GF(T'a) (79)

with
EE,

o=>b
E—-E’

or = (1 — b)a% + bay, (80)

where @9, is the initial and oy the current flow stress for the metal matrix, and the parameter 5 ranges from 0
to 1 with » = 1,0 corresponding to, separately, purely isotropic and purely kinematic hardening. Besides, £
and E, are Young’s modulus and the tangent modulus associated with the Kirchhoff stress-logarithmic
strain curve in a uniaxial test of the metal matrix. Here oy characterizes the isotropic hardening of metal
matrix. Hence, by identifying the internal variable k& with o, Eq. (79) is again a particular form of the
general evolution equation (29).

Combining Egs. (78) and (79), and using Eq. (75), we derive the evolution equation of the void volume
fraction ¢ as follows:

. of Ad 0

qb:A((l—(j))tr(a—i)—l—m(r:a—{)). (81)
Furthermore, Eqs. (75) and (76) produce

D=D: il (82)

Egs. (82), (74), (79) and (81), together with Egs. (A.5)—(A.7), supply a system of Eulerian rate type con-
stitutive equations governing the Kirchhoff stress z, the back stress «, the flow strength or and the void
volume fraction ¢. This system and the consistent combination of the decompositions (18) and (38),
proposed in Section 4, constitute an Eulerian rate type model for void growth and nucleation in porous
metals experiencing finite elastic—plastic deformations. As a test problem, in Section 7 we study the finite
simple shear response of this model by means of Runge-Kutta numerical integration.

We conclude this section with some remarks on recent interesting and instructive works by Voyiadjis and
Kattan (1992a,b). In these works, a general large deformation elasto-plasticity-damage theory with a
symmetric second-order damage tensor variable has been established by postulating the decomposition (18)
and adopting the corotational rates defined by the spin tensors of the form

Q2 = oW,

with w being a scalar influence parameter. The general theory is applied to derive a model for void growth
by relating a quadratic yield function of von Mises type with combined isotropic-kinematic hardening to a
modified Gurson’s yield function. Some interesting results have been obtained in this case. The idea and
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approach employed are insightful, instructive and quite general. However, here we would like to raise two
questions for consideration.
First, a corotational rate S defined by a spin tensor £2 of the aforementioned form, i.e.

S—$+SQ-0S  Q=oW,

is not objective except for the case when w = 1. To substantiate this statement, consider the transformation
of the above corotational rate under the change of frame specified by a time-dependent proper orthogonal
tensor Q. Under the just-mentioned change of frame, an objective symmetric second-order Eulerian tensor
S changes to QSQ", while the vorticity tensor W changes to QWQ" + QQ" (see, e.g. Ogden (1984)) and
hence the spin £ to

Q2Q" + wQQ".

In addition, an objective scalar w, in particular, a constant w, keeps unaltered. As a result, the corotational
rate S changes to

(QSQ") + (QSQ")(QRQ" + wQQ") — (QRQ" + wQQ")(QSQ™).
Then, by the virtue of Eq. (3) and the equality
QQT = _QQT>

one can further deduce that the corotational rate S changes to

QSQ" + (1 - »)(QSQ" + QSQ").
Thus, the corotational rate S is objective, i.e. the latter is identical to QSQ" for every time-dependent
proper orthogonal tensor Q, if and only if

(1-)(QsQ" +QsQ") =0

for eyery time-dependent proper orthogonal tensor Q. The latter is possible only for the case when o = 1,
i.e., S is the well-known Zaremba—Jaumann rate.
Next, through relating the general model to a modified Gurson’s model, the material parameters ¢, and
q» in the modified Gurson’s yield function given by Eq. (72) are found to assume the forms (cf. Egs. (100)
and (83) in Voyiadjis and Kattan (1992a,b), respectively; the void volume fraction v therein has been re-
placed by ¢ here):
4 8

‘11:%7 QZ=3752-

Substituting the above expressions into Eq. (72), one arrives at

2, , 8 tre 11
fg(ra):(toz)+§aéch< )?G%.

201

The latter, however, implies that the void volume fraction ¢ has no influence on yielding behaviour.

7. Finite simple shear

For the sake of simplicity, we consider Gurson’s model with purely isotropic hardening, i.e.

QI:%:L b:17 OfF = 0y, C:Oa a=0.
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Moreover, it will be shown shortly that in the course of finite simple shear deformation, the spherical
component of the stress trz vanishes, i.e.

trt=0, 7=r1.

Hence, for the case at issue, the yield condition is of the form

‘f:f—%oizo, (83)
and Eqgs. (A.5)—(A.8) and (A.11) are reduced to
¢ = Ay, (84)
Gy = 240(1 — )y, (85)
D=0 4 3 (86)
2G ’

where the plastic multiplier Jis given by

V] 1 T:1

T S (prsnyp St 87)

For simple shear deformation, we have trD = 0. From this and Eq. (86), we infer trz = 0. Then, the latter
and Eq. (16b) gives trt = 0, as mentioned before.
Taking into account now the relation (cf. Eq. (17))

the plastic multiplier 4 can be redefined for the effective Kirchhoff stress z
V] 1 z:7

For processes with prescribed deformation, as it is the case for simple shear, it is more convenient to express
here the rate of the effective stress through the stretching. This can be achieved by multiplying Eq. (86)
with T
T D= t:t43ie:
T:D=577:7 AT 1.
We introduce here Eq. (88), and finally find
2Go

T:t=——7:D. 89

H N e (89)
With this transformation, the rate equations (85) and (86) can be redefined to give

. 3Go 7:D

AR T G0

° ) 3 3G 7:D

T8 =74 7Q QT =2G|D -y 7. 1

T T+7 T=2G 2¢5+3G J%,t (91)

The finite simple shear deformation is specified by

X = (X; +pX>)e; + Xoe, + Xes, (92)
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where (e;, e,, €3) is a fixed orthonormal basis; X = Z?:, Xe; and x = 23:1 x;¢; are the initial and the current
position vectors of a material particle, respectively.
The left Cauchy—Green tensor B is of the form

B: (1 +y2)e1 ®e1 —|—y(e1 ®e2—|—e2®e1) +e2®e2+e3 ®e3. (93)
The eigenvalues of B are as follows:
2+7+9v4+97)/2,

X1 :(
D= CHP = A+)/2= ()", (94)
X3:1

The logarithmic strain h for simple shear is of the form

1 sh™'w
h=—InhB=——(0(e; Re; —e,0¢e) +e, Qe +e,Re). 95
2 \/H—a)z( (1 1 2 2) 1 2 2 1) ( )

Here and hereafter o = 7/2, and sh™' w is used to represent the inverse hyperbolic sine function of o, i.e.
sh™' o =In(w + 1+ o?).

The stretching D and the vorticity tensor W are given by
D=dw(e;®@e;+e®e), (96)
W=oe, @e,—e;,Re). (97)

The process of simple shear deformation response consists of two stages: First, the elastic response (hence
D = O) starts at @ = 0 and ends at a yielding point @ = P, and then follows the elastic—plastic response
(hence D® # Q) for all w = wP. The two stages will be studied separately.

7.1. The elastic response and the elastic—plastic transition

For the elastic response, we have h®° = h. Hence, Eq. (77) yields

1 h™!
%:EInB:%(w(q@el—e2®e2)+e1®e2+e2®e1). (98)

In deriving the above, In(det B) = In(y, x,%;) = 0 is used. Moreover, due to = 0 (cf. Eq. (36)), there is no
void nucleation and growth, i.e.

=0

during the whole stage of elastic response, if ¢|,_, = 0. Thus, we have

-1
o2 %9)
2G 1+ w?
h71
i = 122 = i @ T11 = WTq2. (100)

E__E_w\/l+cuz7
The above elastic response starts at @ = 0 and concludes with

2
vt =30})
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1.e.

rferrf] :%(‘7(\)()27 (101)

which corresponds to the yield point w = wP. Using the expressions (99)—(101), we infer that wP is deter-
mined by

0
sh™' P = 7€GGY :
Hence, we have
V3l
P _ Y
P = sh G (102)
Let further 7}, = 7;|,_,», then we have
T V30y/6G (103)
261+ sh(v30/66)
h_ % _ (V30Y/6G)sh(v3ay/6G) (104)

26 26 \/ 1+ sh*(v/36% /6G)

In particular, following Moss (1984) (cf. Eq. (29) therein, in which ¥,/G = 0.1 with Y, being o9 here), we
choose the initial yield stress ¢% as

ay/G=0.1. (105)
For such a case, Eq. (102) yields

o — sh Y3 — 28871 102,
60
and hence
T?z _ 2 ‘Cllgl _ '552 _ 4
T 2.8855 x 107, YT 8.3310 x 107,

7.2. The elastoplastic response and the void nucleation

The plastic flow and the void nucleation occurs whenever @ > wP and are governed by the yield con-
dition (83) and the rate equations (84), (90) and (91), with the loading—unloading indicator y» = 1.

Note that 7 is the effective Kirchhoff stress. For simple shear deformation, however, the latter is identical
with the effective Cauchy stress a/(1 — ¢), due to the fact (cf. Eq. (93))

det F =+vdet B=1.

The above system may be further simplified. In fact, for the simple shear deformation (cf. Eq. (92)), both
the left Cauchy—Green tensor B (cf. Eq. (93)) and the stretching D (cf. Eq. (96)) are essentially symmetric
second-order tensors in two dimensions. As a result, the expression (2.9), in Xiao et al. (1997a) can be
reduced to Eq. (2.9), therein, i.e. the log-spin ©'°¢ for the simple shear deformation is given by

Q8 = W 4+ v(BD — DB) = i)(1 +4ve’) (e, R e; —e; @ €y),
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where the coefficient v can be obtained by using Eq. (2.10) in Xiao et al. (1997a) and Eq. (94). Hence, we
have

Ql(’g: e1®ez—ez®el). (106)

1 1 w

Ew( T+a? T mshlw)(

Then, by means of Egs. (91), (96) and (106), we infer
6G? 7:D

0+3G t:7

with x = 733, T13, To3, T11 + T22. Since each x, vanishes during the whole elastic process, from the above

differential equation for x, we infer that each x continues to vanish during the whole stage of the succeeding
elastic—plastic process. Thus, the effective stress 7 is of the form

%:f“(e]®e1—e2®ez)+f12(e1®e2+ez®e1). (107)
Utilizing the latter and the identity

X+ x=0

do _ , de
dr dw
for each function ¢ = @(w), we arrive at simplified forms of Eqgs. (83) and (91):
= V3\/73 + 73, (108)
dz), 1 — QT T
- +—=—5=0, 109
do (l+w2 \/1+—w2sh w)T T+ 75 (109)
dt, 1 w Lt -073
————==0. 110
dw+<1+wz+\/1—&-wzsh]w>Tll T+ T3 (110)
Here and henceforth,
3G / oy — le ’ Tz/

°T5v36 Y2 T2 T aG
Eqgs. (109) and (110) with the initial conditions (103) and (104) determine the effective stress components 7},
and 7}, as functions of the shear strain w. Then, Eq. (108) gives the flow yield strength ¢%,. In addition, the
void volume fraction ¢ is obtained by integrating the rate equation (84). Finally, the true stress components
7}, and 1}, are given by

Ty == 1 =@)7, Th=(1-9¢)7,. (111)

Various forms of the evolution relation of the void fraction volume ¢ to the flow yield strength oy are
possible, refer to, e.g. Lemaitre and Chaboche (1990). If the material parameter 4 in Eq. (84) is regarded as
a constant, then one can readily derive a linear relation between ¢ and oy. Here, we assume the exponential
form

p=1-— efk(ayfa(i)/agv oy > 0'2(, (112)

where k£ > 0 is a dimensionless material parameter. Evidently, whenever the flow yield strength gy is close to
the initial yield strength o5, i.e. (oy — 0%)/a% is small, the foregoing linear relation gives a good approx-
imation of the general relation (112).

Setting ¢ = 0.9 and ¢% /G = 0.1, we obtain the effective normal stress 7}, and the effective shear stress 7/,
by means of Dormand-Prince numerical integration. Then, from Eq. (112), we obtain the void volume
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fraction ¢ for various possible values of the material parameter k. Here we set £ = 0.2. Finally, we obtain
the true normal stress 7, and the true shear stress 7}, from Eq. (111).

The results are shown in Figs. 1-5, where in Fig. 1, the dimensionless effective shear stress is depicted vs
the shear strain w. In addition to the solution of the differential equations (109) and (110) for the loga-
rithmic rate, we also have presented solutions for the Zaremba—Jaumann rate and the Green—Naghdi rate,
where according to Eq. (5), we have introduced 2' = W and Q°N = RRT, respectively. It is illustrated that
both results for the logarithmic rate and the Green—Naghdi rate as well show almost linear increasing
behaviour, whereas the Zaremba—Jaumann rate tends to display oscillating properties and, for the hard-
ening parameter ¢ under consideration, even changes the sign of the shear stress for very high strains of
about w = 8.3. As has been observed by various authors the Jaumann rate may cause physically not
plausible results.

The effective normal stresses vs the shear strain w are shown in Fig. 2. Here again the Zaremba—Jaumann
rate tends to display oscillating behaviour. The Green—Naghdi rate leads to an almost constant normal
stress. Only the logarithmic rate creates a monotonically increasing stress as would be expected from ex-
perimental observations.

The respective dimensionless true stresses are presented in Figs. 3 and 4. Whereas the shear stresses for
the logarithmic rate and the Green—Naghdi rate are almost identical, first increasing and then decreasing,

T12/2G
1.2 7

1 -

Green/Naghdi rate -~
0.8 gharrate

0.6 .=~ log rate

0.4 - -

0.2 == ~~~__ Jaumann rate

0 RS (0]

-0.2-

Fig. 1. Effective shear stresses vs shear strain.

T1/2G
0.6 7

0.5 -7 "
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0.2 log rate

.- Green/Naghdi rate

Fig. 2. Effective normal stresses vs shear strain.
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with a maximum at about w = 1.2, and asymptotically tending to zero, the result for the Zaremba—
Jaumann rate again changes its sign, as for the effective shear stress.

In Fig. 4, the true normal stresses show physically plausible behaviour for both the logarithmic rate and
the Green—Naghdi rate, except for the Zaremba—Jaumann rate, which again leads to an oscillating re-
sponse.

The void volume fraction ¢ vs the shear strain w is shown in Fig. 5. The results for the Green—Naghdi
rate and the logarithmic rate are again almost identical. For very large values of shear strain w, the void
volume fraction ¢ tends asymptotically to the value 1. As has been emphasized by different authors, this
indeed will restrict the validity of our fundamental assumptions.

8. Conclusion

It has been demonstrated that, by consistently combining additive and multiplicative decomposition of
the stretching D and the deformation gradient F and adopting the logarithmic stress rate, a general Eulerian
rate type model for finite deformation elastoplasticity coupled with isotropic damage is proposed. The new
model is shown to be self-consistent in the sense that the incorporated rate equation for the damaged elastic
response is exactly integrable to yield a damaged elastic relation between the effective Kirchhoff stress and
the elastic logarithmic strain. The rate form of the new model in a rotating frame in which the foregoing
logarithmic rate is defined, is derived and from it an integral form is obtained. The former is found to have
the same structure as the counterpart of the small deformation theory and may be appropriate for nu-
merical integration. The latter indicates, in a clear and direct manner, the effect of finite rotation and
deformation history on the current stress and the hardening and damage behaviours. Further, it is pointed
out that in the foregoing self-consistency sense of formulating the damaged elastic response the suggested
model is unique among all objective Eulerian rate type models of its kind with infinitely many objective
stress rates to be chosen. In particular, it is indicated that, within the context of the proposed theory, a
natural combination of the two widely used decompositions concerning D and F can consistently and
uniquely determine the elastic and the plastic parts in the two decompositions as well as all their related
kinematical quantities.

As an application, the proposed model is applied to derive a self-consistent Eulerian rate type model for
void growth and nucleation in metals experiencing finite elastic—plastic deformation by incorporating a
modified Gurson’s yield function and an associated flow rule, etc. As a test problem, the finite simple shear
response of the model is studied by means of numerical integration. It turned out from these calculations
that the results obtained for the effective and the true stresses can represent the experimentally observed
behaviour, when the logarithmic rate is incorporated in the model. It has been demonstrated further that
the Zaremba—Jaumann rate and the Green—Naghdi rate as well may lead to a physically nonplausible
behaviour.
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Appendix A

In this appendix, some calculations related with the constitutive model describing the elastic—plastic
damage behaviour are comprised.
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For the modified Gurson’s yield function (Eq. (72)), we have
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Utilizing the evolution equations (74), (79) and (81), from the general formula (35), we derive an ex-
pression for the plastic multiplier 4 as follows:
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where the loading—unloading indicator v is given by Eq. (36). Substituting the derivatives 0f /0t, 0f /0¢ and
0f /Oar given by Egs. (A.1)-(A.4) and making use of
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one can obtain an explicit expression for 5 as follows:

B=3ctr(t —a)’ — 6qi05¢(1 — ¢)Sh<;“:> (qqu N qlCh(ﬁ))

— % (31: (U — a) + qiog(tro) sh(%))

(o (20— qren(57) ) 1 i 7 an (U7 1 BulE 2 (A1)
TR\ PP TN 20, 19 26r 7\ 20r 20t ' .



682 O.T. Bruhns et al. | International Journal of Solids and Structures 38 (2001) 657-683
References

Backmann, M.E., 1964. From the relation between stress and finite elastic and plastic strains under impulsive loading. J. Appl. Phys.
35, 2524-2533.

Bruhns, O.T., Diehl, H., 1989. An internal variable theory of inelastic behaviour at high rate of strain. Arch. Mech. 41, 427-460.

Bruhns, O.T., SchieBle, P., 1996. A continuum model of elastic—plastic materials with anisotropic damage by oriented microvoids. Eur.
J. Mech. A/Solids 15, 367-396.

Bruhns, O.T., Xiao, H., Meyers, A., 1999. Self-consistent Eulerian rate type elastoplasticity models based on the logarithmic stress
rate. Int. J. Plast. 15, 479-520.

Chaboche, J.L., 1988. Continuum damage mechanics: Part I and Part II. ASME J. Appl. Mech. 55, 59-72.

Dienes, J.K., 1979. On the analysis of rotation and stress rate in deforming bodies. Acta Mech. 32, 217-232.

Gurson, A.L., 1977. Continuum theory of ductile rupture by void nucleation and growth. Part I: Yield criteria and flow rules for
porous ductile media. J. Engng. Mater. Tech. 99, 2-15.

Hill, R., 1978. Aspects of invariance in solid mechanics. Adv. Appl. Mech. 18, 1-75.

Kachanov, L.M., 1958. On the creep rupture time. Izv. AN USSR Otd. Tech. Nauk 8, 26-31.

Kachanov, L.M., 1986. Introduction to Continuum Damage Mechanics. Martinus Nijhoff, Amsterdam.

Khan, A.S., Huang, S.J., 1995. Continuum theory of plasticity. Wiley, New York.

Krajcinovic, D., 1996. Damage Mechanics. North-Holland, Amsterdam.

Krajcinovic, D., Lemaitre, J. (Eds.), 1987. Continuum damage mechanics. Theory and applications. CISM Courses and Lectures,
Springer, Vienna.

Kroner, E., 1960. Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Rat. Mech. Anal. 4, 273-334.

Lee, E.H., Liu, D.T., 1967. Finite strain elastic—plastic theory with application to plane-wave analysis. J. Appl. Phys. 38, 19-27.

Lee, E.H., 1969. Elastic—plastic deformation at finite strains. ASME J. Appl. Mech. 36, 1-6.

Lehmann, Th., 1972a. Anisotrope plastische Forméanderungen. Romanian J. Tech. Sci. Appl. Mech. 17, 1077-1086.

Lehmann, Th., 1972b. Einige Bemerkungen zu einer allgemeinen Klasse von Stoffgesetzen fiir groBe elasto-plastische Forménder-
ungen. Ing. Arch. 41, 297-310.

Lehmann, Th., Guo, Z.H., Liang, H.Y., 1991. The conjugacy between Cauchy stress and logarithm of the left stretch tensor. Eur. J.
Mech. A/Solids 10, 297-310.

Lemaitre, J., 1992. A Course on Damage Mechanics. Springer, Berlin.

Lemaitre, J., Chaboche, J.L., 1990. Mechanics of Solid Materials. Cambridge University Press, Cambridge.

Lubarda, V.A., 1994. An analysis of large-strain damage elastoplasticity. Int. J. Solids Struct. 31, 2951-2964.

Lubarda, V.A., Krajcinovic, D., 1995. Some fundamental issues in rate theory of damage elastoplasticity. Int. J. Plast. 11, 763-797.

Meer, M.E., Hutchinson, J.W., 1985. Influence of yield surface curvature on flow localization in dilatant plasticity. Mech. Mater. 4,
395-407.

Moss, W.C., 1984. On instabilities in large deformation simple shear loading. Comp. Meth. Appl. Mech. Engng. 46, 329-338.

Naghdi, P.M., 1990. A critical review of the state of finite plasticity. ZAMP 41, 315-394.

Nagtegaal, J.C., de Jong, J.E., 1982. Some aspects of non-isotropic work-hardening in finite strain plasticity. In: Lee, E.H., Mallett,
R.L. (Eds.), Proc. of the workshop on plasticity of metals at finite strain: Theory, experiment and computation, Stanford
University, CA, USA, pp. 65-102 .

Neale, K.W., 1981. Phenomenological constitutive laws in finite plasticity. SM Archives 6, 79-128.

Needleman, A., Rice, J.R., 1978. Limits to ductility set by plastic flow localization. In: Koistinen, D.P., Wang, N.M. (Eds.), Mechanics
of Sheet Metal Forming, Plenum Press, New York, pp. 237-267.

Nemat-Nasser, S., 1979. Decomposition of strain measures and their rates in finite deformation elastoplasticity. Int. J. Solids Struct.
15, 155-166.

Nemat-Nasser, S., 1982. On finite deformation elastoplasticity. Int. J. Solids Struct. 18, 857-872.

Nemat-Nasser, S., 1992. Phenomenological theories of elastoplasticity and strain localization at high strain rates. Appl. Mech. Rev. 45,
S19-S45.

Ogden, R.W., 1984. Nonlinear Elastic Deformations. Ellis Horwood, Chichester.

Onat, E.T., Leckie, F.A., 1988. Representation of mechanical behaviour in the presence of changing internal structure. ASME J. Appl.
Mech. 55, 1-10.

Reinhardt, W.D., Dubey, R.N., 1995. Eulerian strain-rate as a rate of logarithmic strain. Mech. Res. Commun. 22, 165-170.

Reinhardt, W.D., Dubey, R.N., 1996. Coordinate-independent representation of spin tensors in continuum mechanics. J. Elast. 42,
133-144.

Simd, J.C., Pister, K.S., 1984. Remarks on rate constitutive equations for finite deformation problem: computational implications.
Comp. Meth. Appl. Mech. Engng. 46, 201-215.

Tvergaard, V., 1982a. On localization in ductile materials containing spherical voids. Int. J. Fract. 18, 237-252.

Tvergaard, V., 1982b. Material failure by void coalescence in localized shear bands. Int. J. Solids Struct. 18, 659-672.



O.T. Bruhns et al. | International Journal of Solids and Structures 38 (2001) 657-683 683

Tvergaard, V., Needleman, A., 1984. Analysis of cup-cone fracture in a round tensile bar. Acta Metall. 32, 157-169.

Voyiadjis, G.Z., Kattan, P.I., 1992a. A plasticity-damage theory for large deformation of solids — I. Theoretical formulation. Int. J.
Engng. Sci. 30, 1089-1108.

Voyiadjis, G.Z., Kattan, P.I., 1992b. Finite strain plasticity and damage in constitutive modelling of metals with spin tensors. Appl.
Mech. Rev. 45, S95-S109.

Willis, J.R., 1969. Some constitutive equations applicable to problems of large dynamic plastic deformation. J. Mech. Phys. Solids 17,
359-369.

Xiao, H., Bruhns, O.T., Meyers, A., 1996. A new aspect in the kinematics of large deformation. In: Gupta, N.K. (Ed.), Plasticity and
impact mechanics, New Age Intern. Publ. Ltd., New Delhi, pp. 100-109.

Xiao, H., Bruhns, O.T., Meyers, A., 1997a. Hypo-elasticity model based upon the logarithmic stress rate. J. Elast. 47, 51-68.

Xiao, H., Bruhns, O.T., Meyers, A., 1997b. Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mech. 124, 89-105.

Xiao, H., Bruhns, O.T., Meyers, A., 1998a. On objective corotational rates and their defining spin tensors. Int. J. Solids Struct. 35,
4001-4014.

Xiao, H., Bruhns, O.T., Meyers, A., 1998b. Strain rates and material spins. J. Elast. 52, 1-41.

Xiao, H., Bruhns, O.T., Meyers, A., 1999. Existence and uniqueness of the integrable-exactly hypoelastic equation 7* = A(trD)I + 2uD
and its significance to finite inelasticity. Acta Mech. 138, 31-50.

Xiao, H., Bruhns, O.T., Meyers, A., 2000. A consistent finite elastoplasticity theory combining additive and multiplicative
decomposition of the stretching and the deformation gradient. Int. J. Plast. 16, 143-177.



