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Abstract

Continuum models for coupled behaviour of elastoplasticity and isotropic damage at ®nite deformation are usually

formulated by ®rst postulating the additive decomposition of the stretching tensor D into the elastic and the plastic part

and then relating each part to an objective rate of the e�ective stress, etc. It is pointed out that, according to the existing

models with several widely used objective stress rates, none of the rate equations intended for characterizing the

damaged elastic response is exactly integrable to really deliver a damaged elastic relation between the e�ective stress and

an elastic strain measure. The existing models are thus self-inconsistent in the sense of formulating the damaged elastic

response. By consistently combining additive and multiplicative decomposition of the stretching D and the deformation

gradient F and adopting the logarithmic stress rate, in this article, we propose a general Eulerian rate type model for

®nite deformation elastoplasticity coupled with isotropic damage. The new model is shown to be self-consistent in the

sense that the incorporated rate equation for the damaged elastic response is exactly integrable to yield a damaged

elastic relation between the e�ective Kirchho� stress and the elastic logarithmic strain. The rate form of the new model

in a rotating frame in which the foregoing logarithmic rate is de®ned, is derived and from it an integral form is obtained.

The former is found to have the same structure as the counterpart of the small deformation theory and may be ap-

propriate for numerical integration. The latter indicates, in a clear and direct manner, the e�ect of ®nite rotation and

deformation history on the current stress and the hardening and damage behaviours. Further, it is pointed out that in

the foregoing self-consistency sense of formulating the damaged elastic response, the suggested model is unique among

all objective Eulerian rate type models of its kind with in®nitely many objective stress rates to be chosen. In particular, it

is indicated that, within the context of the proposed theory, a natural combination of the two widely used decompo-

sitions concerning D and F can consistently and uniquely determine the elastic and the plastic parts in the two de-

compositions as well as all their related kinematical quantities, without recourse to any ad hoc assumption concerning a

special form of the elastic part Fe in the decomposition F � FeFp or a related relaxed intermediate con®guration. As an

application, the proposed general model is applied to derive a self-consistent Eulerian rate type model for void growth

and nucleation in metals experiencing ®nite elastic±plastic deformation by incorporating a modi®ed Gurson's yield

function and an associated ¯ow rule, etc. Two issues involved in previous relevant literature are detected and raised for

consideration. As a test problem, the ®nite simple shear response of the just-mentioned model is studied by means of

numerical integration. Ó 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It is widely recognized that in a deforming material body, evolution of microstructure, such as micro-
defects, microvoids and microcracks, etc. is the main cause leading to irreversible inelastic deformations.
On the other hand, deformation, in particular large deformation, usually causes changes of microstructure
in a material body. The actual coupling mechanism between the process of deformation and the evolution
of microstructure may be extremely complicated in nature. In an idealized and simpli®ed sense, a macro-
scopic scalar variable / called damage variable, among other things, may be introduced to represent the
state of microstructure and is directly associated with pertinent mechanical quantities, such as the stress, the
material moduli, etc. Then, a phenomenological model for the foregoing coupling mechanism may be es-
tablished by formulating the evolution equation of the damage variable / and other relevant rate type
constitutive equations. Since the inception of the seminal idea by Kachanov (1958), the very promising
branch of continuum mechanics, continuum damage mechanics, has been developing extensively and steadily
and receiving increasing applications in numerous related ®elds, refer to, e.g. Kachanov (1986), Krajcinovic
and Lemaitre (1987), Chaboche (1988), Lemaitre and Chaboche (1990), Lemaitre (1992), Krajcinovic
(1996) and the relevant literature therein for details.

At the present stage of development, a set of damage variables and other internal variables of scalar type
and tensorial type are introduced to characterize the state of microstructure of a material in a more realistic
manner and more general models are accordingly developed, see the aforementioned monographs and
recent works by, e.g., Onat and Leckie (1988), Bruhns and Diehl (1989), Voyiadjis and Kattan (1992a,b),
Lubarda (1994), Lubarda and Krajcinovic (1995), and Bruhns and Schieûe (1996), and others. This general
aspect is still under continuing development. In this article, we are mainly concerned with the classical
aspect, i.e. the isotropic damage with one scalar damage variable /. This aspect has been fully studied with
reference to both small and ®nite deformation due to its simple, clear and direct physical meaning. Now, it
may be said that isotropic damage theories with reference to small deformation are well established on ®rm
mathematical and physical foundations. However, the case might not be so when large deformation is
concerned. In fact, even the existing formulations of ®nite deformation elastoplasticity are somewhat
controversial and a number of fundamental issues between them have been indicated and extensively de-
bated (see, e.g., the recent comprehensive review by Naghdi (1990) and the pertinent references therein for
detail). As a result, ®nite deformation elastoplastic damage theories based on them are accordingly subject
to the same issues.

Based on some recent developments in kinematics of ®nite deformation and rate type constitutive models
by these authors and other researchers (see Bruhns et al., 1999; Xiao et al., 1996, 1997a,b, 1998a,b, 1999,
2000; Lehmann et al., 1991; Reinhardt and Dubey, 1995, 1996), we shall establish a general Eulerian rate
type model for ®nite deformation elastoplasticity coupled with isotropic damage, with which the main
fundamental discrepancies involved in existing formulations of ®nite elastoplasticity disappear. The main
content of this article is arranged as follows: In Section 2, for later use we introduce the newly discovered
logarithmic rate and the rotating frame in which the latter is de®ned, as well as other basic facts regarding
kinematics of ®nite deformations of continua. In Section 3, postulating the additive decomposition of the
stretching D and adopting the logarithmic rate, we establish a complete system of Eulerian rate type
constitutive equations governing the coupled behaviour of ®nite elastoplasticity and isotropic damage. It is
pointed out that the logarithmic rate is a unique choice among all in®nitely many objective corotational
rates, in the self-consistency sense of achieving an integrable-exactly rate type formulation of damaged
elastic response. In Section 4, the elastic and the plastic part in the decomposition F � FeFp and all their
related kinematical quantities are uniquely and consistently determined. In Section 5, we supply the rate
form of the suggested constitutive formulation in a rotating frame in which the logarithmic rate is de®ned
and then derive an integral formulation. Some implications of the results obtained are indicated. In Section
6, incorporating a modi®ed Gurson's yield function and an associated ¯ow rule, etc. we apply the general
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model proposed in Section 3 to derive a self-consistent Eulerian rate type model for void growth and
nucleation in porous metals at ®nite deformation. Two issues involved in previous relevant literature are
detected and raised for consideration. Finally, in Section 7, we study the ®nite simple shear response of the
model established in Section 6 by means of numerical integration.

Let Q, A, B and H be, respectively, an orthogonal tensor, two second-order tensors and a fourth-order
tensor. We shall use the notations A : B, AB, Q � A, H : A and Q �H to designate, respectively, the scalar,
the three second-order tensors and the fourth-order tensor given by

A : B � AijBij;

�AB�ij � AikBkj;

�Q � A�ij � QikQjlAkl;

�H : A�ij � HijklAkl;

�Q �H�ijkl � QipQjqQkrQlsHpqrs:

The following identities will be useful:

�Q � A� : �Q � B� � A : B;

�Q �H� : �Q � A� � Q � �H : A�:

2. Logarithmic rate and logarithmic rotating frame

Consider a deforming body with particles. We identify each particle with a position vector X in a ref-
erential con®guration, e.g. an initial con®guration. The current position vector of a particle X is denoted by
x � �x�X; t�, and hence the velocity vector of a particle X is given by v � _x: Throughout, the superposed dot
is used to represent the material time derivative.

The local deformation state at a particle X is described by the deformation gradient

F � ox

oX
;

while the rate of change of deformation state at a particle X is characterized by the velocity gradient

L � ov

ox
� _FFÿ1:

The following left polar decomposition formula and additive decomposition formula are well known:

F � VR; RT � Rÿ1; B � V2 � FFT;

L �W�D; W � 1
2
�Lÿ LT�; D � 1

2
�L� LT�:

The symmetric positive de®nite tensors V and B are known as, respectively, the left stretch tensor and the
left Cauchy±Green tensor, the proper orthogonal tensor R is the rotation tensor, and the symmetric and
antisymmetric tensors D and W are called the stretching and the vorticity tensor. Throughout, ST and Sÿ1

are used to denote the transpose and the inverse of the second-order tensor S.
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Let the distinct eigenvalues of the left Cauchy±Green tensor B be given by v1; . . . ; vm and their corre-
sponding subordinate eigenprojections by B1; . . . ;Bm. We introduce a general class of Eulerian strain
measures by (see Hill, 1978; Ogden, 1984; see also Xiao et al., 1998a)

e � g�B� �
Xm

a�1

g�va�Ba; �1�

where g: R� ! R, called scale function, is a smooth monotonic increasing function with the normalized
property g�1� � 2g0�1� ÿ 1 � 0. Taking the scale function g�v� as certain particular forms, one can obtain
almost all commonly-known Eulerian strain measures. In particular, by taking g�v� � 1

2
ln v, Hencky's

Eulerian logarithmic strain measure

h � 1
2
ln B � 1

2

Xm

a�1

�ln va�Ba �2�

is available, which will be of particular interest.
On the other hand, let X� be a spin, i.e. a time-dependent antisymmetric second-order tensor. In a

rotating frame with the spin X�, an objective Eulerian symmetric second-order tensor S in a ®xed back-
ground frame, becomes QSQT, and hence its time rate in this rotating frame is given by

_�QSQT� � Q _SQT � _QSQT �QS _Q T � QS
� �QT: �3�

In the above, Q is a proper orthogonal tensor de®ning the spin X�, i.e.

X� � _QTQ �4�
and moreover

S
� � � _S� SX� ÿX�S: �5�

It follows from Eq. (3) that the latter, called the corotational rate of the tensor S de®ned by the spin X�, is
just the counterpart of the time rate of QSQT in a background frame. It is evident that there are in®nitely
many kinds of corotational rates. Not all of them, however, are objective. A well-known example of ob-
jective corotational rate is provided by the Zaremba±Jaumann rate with X� �W, and another well-known
example is given by the Green±Naghdi rate with the polar spin X� � _RRT. In general, the objectivity of a
corotational rate depends on its de®ning spin tensor. The latter must be associated with the rotation and
deformation of the deforming body in question, as is shown by several commonly known examples. A
general class of objective corotational rates and their de®ning spin tensors have been derived by these
authors (Xiao et al., 1998b).

It is commonly accepted that the stretching tensor D, the symmetric part of the velocity gradient, is a
well-de®ned fundamental kinematic quantity measuring the rate of change of local deformation state in a
deforming body. It is frequently referred to as the Eulerian strain rate, the tensor of deformation rate, or
simply the deformation rate. However, it has long been unknown whether or not the stretching can be really
written as a rate of a strain measure. The pertinent question is: whether or not a strain measure e and a spin
X� can be found such that the objective corotational rate of e de®ned by X� is exactly identical with the
stretching tensor D, i.e.

e
�� � _e� eX� ÿX�e � D: �6�

It turns out (see Xiao et al., 1996, 1997a, 1998a) that the above expression, where both the strain measure e
and the spin X� are left to be determined, holds i� the strain measure e is the logarithmic strain h given by
Eq. (2), i.e.
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g�v� � 1
2
ln v: �7�

When e � h, the linear tensor equation (Eq. (6)) has a unique continuous solution to the spin X�, denoted
by Xlog and given by (see Xiao et al., 1996, 1997a, 1998a)

Xlog �W�
Xm

r6�s

1� �vr=vs�
1ÿ �vr=vs�

�
� 2

ln�vr=vs�
�

BrDBs: �8�

An explicit basis-free expression for Xlog can be found in Xiao et al. (1996, 1997a, 1998a). Owing to the
unique relationship between the stretching D and the logarithmic strain h indicated, the spin Xlog has been
termed the logarithmic spin and accordingly the objective corotational rate de®ned by it the logarithmic rate.

The logarithmic rate of an Eulerian symmetric second-order tensor S is denoted by S
�

log, i.e.

S
�

log � _S� SXlog ÿXlogS: �9�
In particular, we have

h
�

log � D: �10�
Let Rlog be the proper orthogonal tensor de®ning the logarithmic spin Xlog, which is called the logarithmic
rotation and determined by the tensor di�erential equation

_
Rlog � ÿRlogXlog �11�

with the initial condition

Rlog jt�0� I: �12�
Then we have (cf. Eqs. (3) and (4))

_�Rlog � S� � Rlog � S
�

log �13�
for any Eulerian symmetric second-order tensor S. In particular, by setting S � h in the above and using
Eq. (10), we have

_�Rlog � h� � Rlog �D: �14�
The logarithmic rotation Rlog de®nes a rotating frame via the transformation of motion

�x��X; t� � x0�t� � Rlog�x�X; t�: �15�
This frame, whose spin is just the logarithmic spin Xlog due to Eq. (11), is called the logarithmic rotating
frame. The equality (Eq. (14)) indicates a kinematical feature of the logarithmic rotation or the logarithmic
spin: An observer in the logarithmic rotating frame observes that the material time derivative of Hencky's
logarithmic strain measure is just the stretching.

Thus, the logarithmic rotation is associated with the deformation and rotation in a deforming body in a
unique manner. It is evident that such an association is purely of kinematical character and independent of
any material behaviour.

Lehmann et al. (1991) were the ®rst to consider the particular case of the tensor equation (Eq. (6)) when
e � h and introduce the logarithmic spin Xlog. Similar results were derived later by Reinhardt and Dubey
(1995, 1996). In a di�erent context, these authors (Xiao et al., 1996, 1997a, 1998a) studied the general case
of tensor equation (Eq. (6)) with both the strain measure e and the spin X� left to be determined and re-
vealed the unique relationship between the stretching D and the logarithmic strain h for the ®rst time. The
signi®cance of the logarithmic rate to formulating Eulerian rate type inelasticity models has been indicated
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in very recent works by these authors (Bruhns et al., 1999; Xiao et al., 1997a,b, 1999, 2000). Based on these
results, in the succeeding sections we shall develop new Eulerian rate type models for ®nite deformation
elastoplasticity coupled with isotropic damage.

3. Eulerian rate type constitutive formulation

We consider a damaged elastoplastic solid with an initial stress-free natural state C0 and with initial
isotropy material symmetry. The initial natural state is taken as the reference con®guration. Accordingly,
we have the initial conditions

F jt�0� I; s jt�0� O: �16a; b�
Here and henceforth, s is used to denote the Kirchho� stress, which is related to the Cauchy stress r by

s � �det F�r:
We assume that the damage variable is a scalar variable / whose value belongs to the interval �0; 1�. Then
we de®ne the e�ective Kirchho� stress as follows:

�s � s

1ÿ /
: �17�

As commonly done (see, e.g., Nemat-Nasser, 1979, 1982), we assume the additive decomposition of the
stretching D:

D � De �Dep: �18�
We call De and Dep the elastic part and the coupled elastic±plastic part of D. Another widely used de-
composition is the multiplicative decomposition of the deformation gradient F (see Eq. (38) given later). A
natural and consistent combination of the two kinds of widely used decompositions will be given in the
Section 4. It will be seen that the elastic part De of D is related to the elastic part Fe of F (see Eq. (42a), while
Dep is associated with both the elastic part Fe and the plastic part Fp of F (see Eq. (42b)).

In the succeeding subsections we shall establish Eulerian rate type constitutive formulations for the two
parts De and Dep as well as the damage variable / etc., respectively.

3.1. Integrable-exactly Eulerian rate type formulation of general damaged hyperelasticity

The elastic part De is related to an objective rate, �s
��, of the e�ective Kirchho� stress �s in a form

De � D : �s
�� �19�

or

�s
�� � C : De: �20�

In the above, the fourth-order tensor D or its inverse Dÿ1 � C characterize the instantaneous elastic be-
haviour of the material. Most often D is chosen as the constant isotropic compliance tensor, especially for
small elastic strain case. Hence,

D � 1

E

�
ÿ 1

2G

�
I
 I� 1

2G
I; �21�

where E and G are Young's modulus and the shear modulus, respectively. Throughout, I and I are used to
designate the second-order and the fourth-order symmetric identity tensor, respectively, i.e.
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�I�ij � dij; �I�ijkl � 1
2
�dikdjl � dildjk� �22�

with the Kronecker delta drs.
In the rate equations (Eqs. (19) or (20)), the choice of the objective rate �s

�� is crucial. It should be noted
that these equations are intended to characterize damaged elastic response. Namely, they must be exactly
integrable to really deliver a damaged elastic, in particular hyperelastic, relation. However, if special care is
not taken, the just-mentioned self-consistency requirement for rate-type characterization of damaged elastic
response may not be ful®lled and some aberrant, spurious phenomena, such as the oscillatory shear stress
response with increasing shearing strain, etc., may be resulted in, as disclosed by Lehmann (1972a,b),
Dienes (1979) and Nagtegaal and de Jong (1982), and others, for the case of hypoelasticity and elasto-
plasticity without damage. Further, Sim�o and Pister (1984) have proved that none of the rate equations
(Eqs. (19) or (20)) with several commonly known stress rates, such as Zaremba±Jaumann rate, Truesdell
rate and Green±Naghdi rate etc., is integrable to yield an elastic, in particular hyperelastic, relation in
nonlinear range. This fact indicates that the existing formulations of Eulerian rate type elastoplasticity (and
accordingly elastoplasticity coupled with damage) are self-inconsistent in the sense of characterizing elastic
response.

The undesirable self-inconsistency indicated above has been removed in very recent works by these
authors for the case of hypoelasticity and elastoplasticity (see Bruhns et al., 1999; Xiao et al., 1997b, 1999).
Utilizing these results, we here propose the integrable-exactly Eulerian rate type formulation of general
damaged hyperelasticity as follows:

De � o2R
o�s o�s

: �s
�

log; �23�

where R � R̂��s�, which is an isotropic scalar function of the e�ective Kirchho� stress �s, is called the e�ective
complementary hyperelastic potential. For small elastic strain, the gradient o2R=o�s o�s may be taken as the
constant isotropic compliance tensor as shown by Eq. (21).

It will be shown in the next two sections that the rate equation (Eq. (23)) provides a consistent de®nition
for the elastic deformation rate De and leads to a general damaged hyperelastic relation according to which
the elastic logarithmic strain measure he (see Eq. (43)) is derivable from the potential R̂��s� with respect
to the e�ective Kirchho� stress �s, as will be shown by Eq. (44). Hence, de®ning a scalar function R0 of he via
the Legendre transformation relation

R0 � R � �s : he

and using the equality (see Eq. (44) given later)

_R � oR
o�s

: _�s � he : _�s;

we deduce

_R0 � ��s : he�
�
ÿ _R � �s : _he:

Then, from the latter and _R0 � oR0
ohe : _he, we infer

�s � oR0

ohe :

In addition, noting that he is given by an isotropic function (see Eq. (44)) of �s and hence that

�s : �heXlog ÿXloghe� � 2�he�s� : Xlog � 0;

and using the relationship (Eq. (45)), we have
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_R0 � �s :
_

he � �s : he
�

log � �s : De:

In the above, the last expression implies that the material time derivative of the scalar function R0 furnishes
the e�ective elastic stress power, whereas the equation relating �s and he shows that the e�ective Kirchho�
stress �s is derivable from the scalar function R0 with respect to the elastic logarithmic strain measure he.
These facts explain why the scalar function R in Eq. (23) has been termed the e�ective complementary
hyperelastic potential.

The logarithmic stress rate used in the rate equation (23) is merely a particular objective stress rate
among in®nitely many objective corotational stress rates (see Xiao et al., 1998a,b). Probably another ob-
jective corotational stress rate may serve our purpose just as well. Hence, by replacing the logarithmic stress
rate �s

�
log with another objective stress rate �s

�� one obtains another form of rate type equation for the elastic
part De of D

De � o2R
o�s o�s

: �s
��:

The above-mentioned nonuniqueness, if any, will result in the puzzling situation concerning which stress
rate is better, as encountered in existing Eulerian rate type formulations of ®nite elastoplasticity (see Khan
and Huang (1995) for detail). Recently, these authors have demonstrated (see Bruhns et al., 1999; Xiao
et al., 1999) that the above rate equation is exactly integrable to deliver an elastic relation if and only if
the stress rate �s

�� is the logarithmic rate �s
�

log, i.e. the rate equation is identical with the rate equation (Eq.
(23)). This fact means that the rate equation (Eq. (23)) is unique among all the rate equations of its kind
with in®nitely many objective corotational rates to be chosen, in the self-consistency sense of formulating
damaged elastic response.

3.2. Yield function, ¯ow potential and ¯ow rules

In addition to the damage variable /, we introduce a scalar k and an objective symmetric second-order
Eulerian tensor a as internal variables to characterize isotropic and kinematic hardening behaviours. The
tensor a is called the back or shift stress. We assume that the current yield surface in the stress space is
de®ned by

f � f̂ �s; a; k;/� � 0: �24�
Here f̂ is an isotropic scalar function of the Kirchho� stress and the back stress a. We further assume that
in the stress space there is another surface

g � ĝ�s; a; k;/�; �25�
such that the elastic±plastic part Dep of the stretching D is in the direction of the gradient of this surface
with respect to the Kirchho� stress s, i.e.

Dep � _k
og
os
: �26�

Accordingly, g is called the ¯ow potential, which is here also an isotropic scalar function of the Kirchho�
stress and the back stress.

For a process of continued plastic ¯ow, the stress point must remain on the current yield surface. Hence,
we have the consistency condition _f � 0 for plastic ¯ow. Since the yield function f is isotropic, we have

f̂ �s; a; k;/� � f̂ �Rlog � s;Rlog � a; k;/�:
Hence, we may write the just-mentioned condition in the form
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f̂ �Rlog � s;Rlog � a; k;/�
�

� 0;

i.e.

of �

os�
: _s� � of �

oa�
: _a� � of �

ok
_k � of �

o/
_/ � 0;

where f � and s� and a� are, respectively, the counterparts of the yield function f and the Kirchho� stress s

and the back stress a in the logarithmic rotating frame, given by Eqs. (59a) and (58) later. Hence, utilizing
the equality (Eq. (13)) and the equality following Eq. (67), as well as the penultimate identity in Section 1,
we formulate the consistency condition for plastic ¯ow in a form convenient for later use:

of
os

: s
� log � of

oa
: a
� log � of

ok
_k � of

o/
_/ � 0: �27�

Moreover, we assume general forms of evolution equations for the damage variable /, the isotropic
hardening parameter k and the back stress a for kinematic hardening as follows:

_/ � / : Dep; _k � k : Dep; a
� log � H : Dep;

i.e.

_/ � _k/ :
og
os
; �28�

_k � _kk :
og
os
; �29�

a
� log � _kH :

og
os
: �30�

Here, the objective symmetric second-order Eulerian tensors / and k and fourth-order Eulerian tensor H

depend on s, a, k and /, i.e.

/ � /̂�s; a; k;/�; k � k̂�s; a; k;/�; H � Ĥ�s; a; k;/�; �31�
and each tensor-valued function above is isotropic with respect to s and a. In addition, the fourth-order
tensor has minor index symmetry. Namely,

/̂�Q � s;Q � a; k;/� � Q � �/̂�s; a; k;/��; �32�

k̂�Q � s;Q � a; k;/� � Q � �k̂�s; a; k;/��; �33�

Hijkl � Hjikl � Hijlk;

Ĥ�Q � s;Q � a; k;/� � Q � �Ĥ�s; a; k;/��;
�

�34�

for every orthogonal tensor Q.
Utilizing Eqs. (28)±(30), from the consistency condition (Eq. (27)) for plastic ¯ow, we derive an ex-

pression for the plastic multiplier _k as follows:

_k � ÿ w

b
of
os

: s
� log;

b � of
oa

: H :
og
os
� of

ok k :
og
os

� �
� of

o/
/ :

og
os

� �
;

8><>: �35�

where the loading±unloading indicator w is of the form (see Bruhns et al., 1999)
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w � 0 if f < 0 or f � 0 and
of̂
os

: s
� log < 0;

1 if f � 0 and
of̂
os

: s
� log P 0:

8><>: �36�

Combining Eqs. (23) and (26) and (18), we arrive at

D � o2R
o�so�s

: �s
�

log � _k
og
os
: �37�

The Eulerian rate type constitutive equations (28)±(30) and (35)±(37), together with Cauchy's equations of
motion, constitute a complete system of equations governing the total kinematical quantities and the total
stress, etc. Of them, the basic elements are the complementary hyperelastic potential R, the yield function f,
the ¯ow potential g and the constitutive tensors /, k and H. For various kinds of materials, the latter may
assume various forms. They must be determined by related experimental data. For example, various forms
of evolution equations for the damage variable / are available in Lemaitre and Chaboche (1990). This
aspect can be simpli®ed by using a yield function of von Mises type and the associated ¯ow rule as well as
simple hardening relations, as will be done in Section 6.

4. Kinematical quantities related to the decomposition F � FeFp

The constitutive formulation proposed in Section 6, together with Cauchy's equations of motion and
well-posed initial and boundary conditions, determine the total stress, the total kinematical quantities F and
L, as well as the elastic part De and the coupled elastic±plastic part Dep, etc. On the other hand, for a
process of elastoplastic deformation, it is required to de®ne and specify elastic and plastic deformations and
their related kinematical quantities. It should be noted that if there is no a priori de®nition for elastic
and plastic deformations, no de®nite information about the latter can be drawn from the rate quantities De

and Dep. On the contrary, De and Dep need to be related to ``elastic deformation'' and ``plastic deformation''
in an appropriate sense.

To introduce and separate elastic and plastic deformations, the physically motivated multiplicative
decomposition of the total deformation gradient is widely used, which was ®rst introduced by Kr�oner
(1960) with reference to a linearized theory, subsequently utilized by Backmann (1964) and Willis (1969),
and systematically and extensively used and developed by Lee and other researchers, see, e.g., Lee and Liu
(1967), Lee (1969); see also, e.g., Lubarda (1994) and Lubarda and Krajcinovic (1995) for recent appli-
cations in continuum damage mechanics. According to this decomposition, the total deformation gradient
F has the multiplicative decomposition

F � FeFp; det Fe > 0; det Fp > 0; �38�
for any process of elastic±plastic deformation. Usually, Fe and Fp are called, respectively, the elastic and the
plastic part of F.

The decomposition (38) produces

L � _FeFeÿ1 � Fe _FpFpÿ1Feÿ1; �39�

D � sym� _FeFeÿ1� � sym�Fe _FpFpÿ1Feÿ1�; �40�

W � skw� _FeFeÿ1� � skw�Fe _FpFpÿ1Feÿ1�: �41�
Here and henceforth we use the notations sym A and skw A to designate the symmetric and the skew-
symmetric part of a second-order tensor A, i.e.
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symA � 1
2

A
ÿ � AT

�
; skw A � 1

2
A
ÿ ÿ AT

�
:

Now, we proceed to establish the relationship between the two decompositions (18) and (38). Towards
this goal, let us compare Eqs. (18) and (40). Clearly, the ®rst term of the right-hand side of Eq. (40) relies on
the elastic part Fe only, whereas the second term depends on both the elastic and the plastic part Fe and Fp.
Thus, a natural, direct relationship between the two decompositions (18) and (38) should be

De � sym� _FeFeÿ1�; Dep � sym�Fe _FpFpÿ1Feÿ1�: �42a; b�
In the above two relations, the former implies the latter and vice versa. The right-hand side of the latter
explains why Dep has been termed the coupled elastic±plastic part of D before.

Consider the constitutive formulation (23) for the elastic part De of the stretching D. As pointed out
before, the rate equation (23) should be exactly integrable to produce a damaged elastic relation. De®ne the
elastic logarithmic strain measure he by

he � 1
2
ln�FeFeT�: �43�

Generally, we may assume that the foregoing damaged elastic relation is of the form

w�he� � oR
o�s
:

Now, we prove that w�he� is exactly he. In fact, for each process of purely elastic deformation, i.e., Fe � F,
we have he � h and De � D. Then, Eq. (23) and the foregoing relation become

D � o2R
o�s o�s

: �s
�

log; w�h� � oR
o�s
:

Hence we infer

w�h�
�

log � D:

Since the potential R � R̂��s� is isotropic, the gradient oR=o�s and hence w�h� are also isotropic. Applying
the chain rule for the gradient of a symmetric second-order tensor-valued isotropic function derived in Xiao
et al. (1999), from the last equality we deduce

ow

oh
: h
�

log � D:

Thus, from the latter and the formula (Eq. (10)), we derive

ow

oh
� I;

i.e., w�h� � h and hence w�he� � he. From the above account, it follows that the elastic relation assumed
before must take the form

he � oR
o�s
: �44�

This and the rate equation (23) result in the relationship

De � he
�

log: �45�
This means that the elastic part De of the total stretching D is just the logarithmic rate of the elastic log-
arithmic strain measure he. Further interpretation of this relationship will be given in Section 5.
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Furthermore, as has been indicated in Xiao et al. (2000), the above established relationship between the
two widely used decompositions (18) and (38) can consistently and uniquely determine the elastic part Fe

and the plastic part Fp in the decomposition (38), as well as all their related kinematical quantities, with no
ad hoc assumption about restricted special forms of Fe and/or Fp. Indeed, from the outset of this section we
know that the e�ective Kirchho� stress �s, the total deformation gradient F, the total velocity gradient L,
and the two parts De and Dep of D, can be obtained by integrating the constitutive equations (28)±(30),
(35)±(37) and Cauchy equations of motion with well-posed initial and boundary conditions. Then, the
elastic deformation Fe � VeRe over a time interval �0; a� is consistently and uniquely determined by Ve and
De given over �0; a�, where the elastic stretch tensor Ve �

������������
FeFeT
p

is determined by (see Eq. (44))

Ve � exp
oR
o�s

� �
; �46�

and the elastic rotation Re is obtained by integrating the linear tensorial di�erential equation (see Eq. (61) in
Xiao et al. (2000))

_Re � XeRe; Rejt�0 � I; �47�
with (see Eq. (64) in Xiao et al. (2000))

Xe � Xlog ÿ
Xm

r6�s

2ke
rk

e
s

ke2
s ÿ ke2

r

 
� 1

ln ke
r ÿ ln ke

s

!
Ve

rDeVe
s: �48�

In addition, we have

_Ve � XlogVe ÿ VeXlog �
Xm

r;s�1

ke
r ÿ ke

s

ln ke
r ÿ ln ke

s

Ve
rDeVe

s: �49�

In the above, ke
r and Ve

r, r � 1; . . . ;m, are the distinct eigenvalues of the elastic stretch Ve and the corre-
sponding subordinate eigenprojections of Ve, respectively.

Once the elastic deformation Fe is available, one can immediately obtain the plastic deformation Fp by

Fp � Feÿ1F: �50�
Now we consider the rate quantities related to Fe and Fp. Let

Le � _FeFeÿ1; �51�

Lp � _FpFpÿ1: �52�
Then, we have

Le � sym� _FeFeÿ1� � skw� _FeFeÿ1� � De �We; �53�
where De is given by Eq. (23) and We by

We � skw� _FeFeÿ1� � skw� _VeVeÿ1 � VeXeVeÿ1�; �54�
where Ve, _Ve and Xe are, respectively, given by Eqs. (46), (49) and (48). Moreover, from Eqs. (39) and (51)±
(53), we derive

Lp � Feÿ1�Lÿ Le�Fe � Feÿ1�LÿDe ÿWe�Fe: �55�
Hence, we have

Dp � sym Lp � sym�Feÿ1�LÿDe ÿWe�Fe�; �56�

668 O.T. Bruhns et al. / International Journal of Solids and Structures 38 (2001) 657±683



Wp � skw Lp � skw�Feÿ1�LÿDe ÿWe�Fe�: �57�
From the above analysis, we conclude that, within the context of the ®nite deformation elastoplasticity-
damage theory suggested in this and the last sections, the elastic deformation Fe and the plastic deformation
Fp and all their related kinematical quantities such as the spins We and Wp, etc. can be consistently and
uniquely determined. Moreover, it is shown in Xiao et al. (2000) that in a full sense the proposed com-
bination of the two widely used decompositions concerning the total stretching D and the total deformation
gradient F obeys the invariance requirement under the change of frame or under the superposed rigid body
rotation.

5. Rate type and integral type constitutive formulations in the logarithmic rotating frame

In the logarithmic rotating frame speci®ed by Eq. (15) an objective scalar keeps unaltered, whereas an
objective symmetric second-order tensor A becomes Rlog � A. In this section, we denote

A� � Rlog � A: �58�
Moreover, we denote

f � � f̂ �s�; a�; k;/�; g� � ĝ�s�; a�; k;/�;
/� � /̂�s�; a�; k;/�; k� � k̂�s�; a�; k;/�;
H� � Ĥ�s�; a�; k;/�:

8<: �59a; b; c�

The Eulerian rate type constitutive formulation proposed in Section 3 is frame-indi�erent, and hence, its
form in the logarithmic rotating frame speci®ed by Eq. (15) remains the same. Consequently, in the log-
arithmic frame Eqs. (28)±(30) and (37) become

_/ � _k/� :
og�

os�
; �60�

_k � _kk� :
og�

os�
; �61�

a
� log� � _kH� :

og�

os�
;

D� � o2R�

o�s�o�s�
: �s
�

log� � _k
og�

os�
:

Applying Eqs. (58), (13) and (14), we rewrite the last two equations into the forms

_a� � _kH� :
og�

os�
; �62�

_
h� �

�
oR�

o�s�

��

� _k
og�

os�
: �63�

Moreover, the plastic multiplier _k given by Eq. (35) becomes

_k � ÿw
b

of �
os� :

_
s�;

b � of �
oa� : H� :

og�
os� �

of �
ok k� :

og�
os�

� �
� of �

o/ /� :
og�
os�

� �
;

8><>: �64�
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where

w �
0 if f � < 0 or f � � 0 and

of̂ �

os� : _s� < 0;

1 if f � � 0 and
of̂ �

os� : _s�P 0:

8><>: �65�

Eqs. (60)±(65) supply the forms of the rate constitutive equations (28)±(30) and (35)±(37) in the logarithmic
rotating frame. It turns out that the rate equations (60)±(65) have the same structure as the counterpart of
small deformation elastoplastic damage theory. Indeed, whenever the deformation is small, the logarithmic
strain measure h and the logarithmic rotation Rlog approximate to the small strain measure � and the
identity tensor I, respectively, and accordingly the quantities s� and a� and h� to s and a and �, respec-
tively. With these approximations Eqs. (60)±(65) are reduced to the rate constitutive equations for small
deformation elastoplastic damage.

Owing to the fact indicated above, the numerical integration of Eqs. (60)±(65) formulated in the loga-
rithmic rotating frame may be carried out by means of the numerical methods developed for small de-
formation theory. Then, the quantities in the current con®guration are available from the corresponding
quantities in the logarithmic rotating frame and the logarithmic rotation Rlog, the latter being obtained by
integrating Eq. (11) with the initial condition (12).

In addition, in the logarithmic rotating frame, Eqs. (14) and (45) are of the forms

_
h� � D�; �66�
_

he� � De�: �67�
The former, being a rigorous kinematical relation, simply means that in the logarithmic rotating frame the
total stretching is exactly the material time derivative of the total logarithmic strain measure, whereas the
latter, which de®nes the elastic part De of the total stretching D, implies that in the logarithmic rotating
frame, the material time derivative of the elastic logarithmic strain measure supplies the elastic part of the
total stretching. These show that the relationship (45) is a natural and consistent de®nition motivated by
and based on the rigorous kinematical relation (14).

Finally, integrating Eqs. (60)±(65) over the time interval �0; t� and using the equalities

oh�

os�
� Rlog � oh

os
; h � f ; g;R;

A� � Rlog � A; A � /; k;H;

as well as the last two identities in Section 1, the initial condition (16) and a jt�0� O, we arrive at

/ � /jt�0 �
Z t

0

_k/ :
og
os

ds; �68�

k �
Z t

0

_kk :
og
os

ds; �69�

a � Rlog T �
Z t

0

Rlog � _kH :
og
os

� �
ds

� �
; �70�

h � oR
o�s
� Rlog T �

Z t

0

_kRlog � og
os

ds
� �

: �71�
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Through the logarithmic rotation Rlog, the above integral type formulation indicates, in a clear and direct
manner, the e�ect of the ®nite strain and rotation history on the current stress, the damage and the
hardening behaviour.

6. A model for void growth and nucleation in metals

In this section, we apply the general model established in the previous sections to derive a model for void
growth and nucleation in porous metals at ®nite deformations. In this case, the damage variable / is in-
terpreted as the void volume fraction.

Based on certain simpli®ed assumptions, Gurson (1977) was the ®rst to establish a continuum model for
void growth and nucleation in porous ductile media with perfectly plastic matrix. Gurson's model was
modi®ed and developed later by various researchers, refer to, e.g. Tvergaard (1982a,b), Tvergaard and
Needleman (1984), and Meer and Hutchinson (1985). This aspect is mentioned in the review articles by
Neale (1981) and Nemat-Nasser (1992) and discussed by Voyiadjis and Kattan (1992a,b) (some relevant
remarks on the latter will be made at the end of this section). Taking these subsequent modi®cations into
account, we here assume a modi®ed form of Gurson's yield function as follows (cf. Eq. (89) in Voyiadjis
and Kattan 1992a):

f � 3

2
�s0 ÿ a� : �s0 ÿ a� � 2q1r

2
F/ch

trs

2rF

� �
ÿ r2

F�1� q2/
2�; �72�

where s0 is the deviatoric Kirchho� stress, rF is the ¯ow yield strength of the metal matrix at uniaxial tensile
test, and q1 and q2 are the two modi®ed material parameters introduced by Tvergaard (1982a,b) and
Tvergaard and Needleman (1984). Moreover, the back stress, which de®nes the centre of the current yield
surface, is assumed to be traceless, i.e.

tra � 0: �73�
Throughout, ch x and shx are used to denote the hyperbolic cosine and sine functions of x.

As commonly done, we assume an associated ¯ow rule and the kinematic hardening rule of Prager±
Ziegler's type. Thus, we have f � g and

a
� log � _kc�s0 ÿ a�; �74�

with c being a kinematic hardening parameter. It is easy to demonstrate that this is just a particular form of
the general evolution equation (30). Besides, the ¯ow rule (26) becomes

Dep � _k
of
os
: �75�

Usually, the elastic strain in a metal matrix is small. In this case, we can take the gradient o2R=o�s o�s as
the constant isotropic compliance tensor given by Eq. (21). Hence, Eqs. (23) and (44) for the damaged
elastic response become

De � D : �s
�

log; �76�

he � D : �s � D

1ÿ /
: s; �77�

where D is given by Eq. (21).
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During the course of deformation, both the growth of existing voids and the nucleation of new cavities
contribute to the change of the void volume fraction /. Following Needleman and Rice (1978), we assume
the evolution equation of the void volume fraction / as follows:

_/ � �1ÿ /�trDep � A _rF: �78�
In the above, the ®rst term of the right-hand side arises from the contribution of the void growth and the
second term from the contribution of the void nucleation, with A being a material parameter. Here, we
assume that the void nucleation is correlated directly with the ¯ow yield strength rF.

On the other hand, from the equivalence of the overall rate of plastic work and that in the matrix
material the following relation is derived (see Eqs. (2.38b) and (2.36c) given in Nemat-Nasser (1992)):

_rF � b _rY � d
s : Dep

�1ÿ /�rF

� _k
d

�1ÿ /�rF

s :
of
os

� �
; �79�

with

d � b
EEt

E ÿ Et

; rF � �1ÿ b�r0
Y � brY; �80�

where r0
Y is the initial and rY the current ¯ow stress for the metal matrix, and the parameter b ranges from 0

to 1 with b � 1; 0 corresponding to, separately, purely isotropic and purely kinematic hardening. Besides, E
and Et are Young's modulus and the tangent modulus associated with the Kirchho� stress-logarithmic
strain curve in a uniaxial test of the metal matrix. Here rY characterizes the isotropic hardening of metal
matrix. Hence, by identifying the internal variable k with rF, Eq. (79) is again a particular form of the
general evolution equation (29).

Combining Eqs. (78) and (79), and using Eq. (75), we derive the evolution equation of the void volume
fraction / as follows:

_/ � _k �1
�
ÿ /� tr of

os

� �
� Ad
�1ÿ /�rF

s :
of
os

� ��
: �81�

Furthermore, Eqs. (75) and (76) produce

D � D : �s
�

log � _k
of
os
: �82�

Eqs. (82), (74), (79) and (81), together with Eqs. (A.5)±(A.7), supply a system of Eulerian rate type con-
stitutive equations governing the Kirchho� stress s, the back stress a, the ¯ow strength rF and the void
volume fraction /. This system and the consistent combination of the decompositions (18) and (38),
proposed in Section 4, constitute an Eulerian rate type model for void growth and nucleation in porous
metals experiencing ®nite elastic±plastic deformations. As a test problem, in Section 7 we study the ®nite
simple shear response of this model by means of Runge±Kutta numerical integration.

We conclude this section with some remarks on recent interesting and instructive works by Voyiadjis and
Kattan (1992a,b). In these works, a general large deformation elasto-plasticity-damage theory with a
symmetric second-order damage tensor variable has been established by postulating the decomposition (18)
and adopting the corotational rates de®ned by the spin tensors of the form

X � xW;

with x being a scalar in¯uence parameter. The general theory is applied to derive a model for void growth
by relating a quadratic yield function of von Mises type with combined isotropic-kinematic hardening to a
modi®ed Gurson's yield function. Some interesting results have been obtained in this case. The idea and
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approach employed are insightful, instructive and quite general. However, here we would like to raise two
questions for consideration.

First, a corotational rate S
�

de®ned by a spin tensor X of the aforementioned form, i.e.

S
�
� _S� SXÿXS; X � xW;

is not objective except for the case when x � 1. To substantiate this statement, consider the transformation
of the above corotational rate under the change of frame speci®ed by a time-dependent proper orthogonal
tensor Q. Under the just-mentioned change of frame, an objective symmetric second-order Eulerian tensor
S changes to QSQT, while the vorticity tensor W changes to QWQT � _QQT (see, e.g. Ogden (1984)) and
hence the spin X to

QXQT � x _QQT:

In addition, an objective scalar x, in particular, a constant x, keeps unaltered. As a result, the corotational
rate S

�
changes to

_
QSQT
ÿ �� QSQT

ÿ ��QXQT � x _QQT� ÿ �QXQT � x _QQT� QSQT
ÿ �

:

Then, by the virtue of Eq. (3) and the equality

_QQT � ÿQ _QT;

one can further deduce that the corotational rate S
�

changes to

QS
�
QT � �1ÿ x�� _QSQT �QS _QT�:

Thus, the corotational rate S
�

is objective, i.e. the latter is identical to QS
�
QT for every time-dependent

proper orthogonal tensor Q, if and only if

�1ÿ x�� _QSQT �QS _QT� � O

for every time-dependent proper orthogonal tensor Q. The latter is possible only for the case when x � 1,
i.e., S

�
is the well-known Zaremba±Jaumann rate.

Next, through relating the general model to a modi®ed Gurson's model, the material parameters q1 and
q2 in the modi®ed Gurson's yield function given by Eq. (72) are found to assume the forms (cf. Eqs. (100)
and (83) in Voyiadjis and Kattan (1992a,b), respectively; the void volume fraction m therein has been re-
placed by / here):

q1 � 4

3/
; q2 � 8

3/2
:

Substituting the above expressions into Eq. (72), one arrives at

f � 2

3
�s0 ÿ a� : �s0 ÿ a� � 8

3
r2

F ch
trs

2rF

� �
ÿ 11

3
r2

F:

The latter, however, implies that the void volume fraction / has no in¯uence on yielding behaviour.

7. Finite simple shear

For the sake of simplicity, we consider Gurson's model with purely isotropic hardening, i.e.

q1 � q2 � 1; b � 1; rF � rY; c � 0; a � O:
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Moreover, it will be shown shortly that in the course of ®nite simple shear deformation, the spherical
component of the stress trs vanishes, i.e.

trs � 0; s0 � s:

Hence, for the case at issue, the yield condition is of the form

�s : �sÿ 2
3
r2

Y � 0; �83�
and Eqs. (A.5)±(A.8) and (A.11) are reduced to

_/ � A _rY; �84�

_rY � 2 _kd�1ÿ /�rY; �85�

D � 1

2G
�s
�

log � 3 _ks; �86�

where the plastic multiplier _k is given by

_k � w
2d

1

�1ÿ /ÿ ArY �
s : _s

s : s
: �87�

For simple shear deformation, we have trD � 0. From this and Eq. (86), we infer tr _s � 0. Then, the latter
and Eq. (16b) gives trs � 0, as mentioned before.

Taking into account now the relation (cf. Eq. (17))

_s � �1ÿ /�_�sÿ _/�s;

the plastic multiplier _k can be rede®ned for the e�ective Kirchho� stress �s

_k � w
2d

1

�1ÿ /�
�s : _�s

�s : �s
: �88�

For processes with prescribed deformation, as it is the case for simple shear, it is more convenient to express
here the rate of the e�ective stress through the stretching. This can be achieved by multiplying Eq. (86)
with �s

�s : D � 1

2G
�s : _�s� 3 _k�s : s:

We introduce here Eq. (88), and ®nally ®nd

�s : _�s � 2Gd
d� w3G

�s : D: �89�

With this transformation, the rate equations (85) and (86) can be rede®ned to give

_rY � w
3Gd

d� 3G
�s : D

rY

; �90�

�s
�

log � _�s� �sXlog ÿXlog�s � 2G D

 
ÿ 3

2
w

3G
d� 3G

�s : D

r2
Y

�s

!
: �91�

The ®nite simple shear deformation is speci®ed by

x � �X1 � cX2�e1 � X2e2 � X3e3; �92�
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where �e1; e2; e3� is a ®xed orthonormal basis; X �P3
i�1 Xiei and x �P3

i�1 xiei are the initial and the current
position vectors of a material particle, respectively.

The left Cauchy±Green tensor B is of the form

B � �1� c2�e1 
 e1 � c�e1 
 e2 � e2 
 e1� � e2 
 e2 � e3 
 e3: �93�
The eigenvalues of B are as follows:

v1 � �2� c2 � c
�������������
4� c2

p
�=2;

v2 � �2� c2 ÿ c
�������������
4� c2

p
�=2 � �v1�ÿ1

;
v3 � 1:

8<: �94�

The logarithmic strain h for simple shear is of the form

h � 1

2
ln B � shÿ1x��������������

1� x2
p �x�e1 
 e1 ÿ e2 
 e2� � e1 
 e2 � e2 
 e1�: �95�

Here and hereafter x � c=2, and shÿ1 x is used to represent the inverse hyperbolic sine function of x, i.e.

shÿ1 x � ln�x�
��������������
1� x2

p
�:

The stretching D and the vorticity tensor W are given by

D � _x�e1 
 e2 � e2 
 e1�; �96�

W � _x�e1 
 e2 ÿ e2 
 e1�: �97�
The process of simple shear deformation response consists of two stages: First, the elastic response (hence
Dep � O) starts at x � 0 and ends at a yielding point x � xp, and then follows the elastic±plastic response
(hence Dep 6� O) for all x P xp. The two stages will be studied separately.

7.1. The elastic response and the elastic±plastic transition

For the elastic response, we have he � h. Hence, Eq. (77) yields

s

2G
� 1

2
ln B � shÿ1 x��������������

1� x2
p �x�e1 
 e1 ÿ e2 
 e2� � e1 
 e2 � e2 
 e1�: �98�

In deriving the above, ln�det B� � ln�v1v2v3� � 0 is used. Moreover, due to w � 0 (cf. Eq. (36)), there is no
void nucleation and growth, i.e.

/ � 0

during the whole stage of elastic response, if /jt�0 � 0. Thus, we have

s12

2G
� shÿ1 x��������������

1� x2
p ; �99�

s11

2G
� ÿ s22

2G
� x

shÿ1 x��������������
1� x2
p ; s11 � xs12: �100�

The above elastic response starts at x � 0 and concludes with

s : s � 2
3
�r0

Y�2;
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i.e.

s2
12 � s2

11 � 1
3
�r0

Y�2; �101�
which corresponds to the yield point x � xp. Using the expressions (99)±(101), we infer that xp is deter-
mined by

shÿ1 xp �
���
3
p

r0
Y

6G
:

Hence, we have

xp � sh

���
3
p

r0
Y

6G
: �102�

Let further sp
ij � sijjx�xp ; then we have

sp
12

2G
�

���
3
p

r0
Y=6G���������������������������������������

1� sh2� ���3p r0
Y=6G�

q ; �103�

sp
11

2G
� ÿ sp

22

2G
� �

���
3
p

r0
Y=6G� sh� ���3p r0

Y=6G����������������������������������������
1� sh2� ���3p r0

Y=6G�
q : �104�

In particular, following Moss (1984) (cf. Eq. (29) therein, in which Y0=G � 0:1 with Y0 being r0
Y here), we

choose the initial yield stress r0
Y as

r0
Y=G � 0:1: �105�

For such a case, Eq. (102) yields

xp � sh

���
3
p

60
� 2:8871� 10ÿ2;

and hence

sp
12

2G
� 2:8855� 10ÿ2;

sp
11

2G
� ÿ sp

22

2G
� 8:3310� 10ÿ4:

7.2. The elastoplastic response and the void nucleation

The plastic ¯ow and the void nucleation occurs whenever x P xp and are governed by the yield con-
dition (83) and the rate equations (84), (90) and (91), with the loading±unloading indicator w � 1.

Note that �s is the e�ective Kirchho� stress. For simple shear deformation, however, the latter is identical
with the e�ective Cauchy stress r=�1ÿ /�, due to the fact (cf. Eq. (93))

det F �
�����������
det B
p

� 1:

The above system may be further simpli®ed. In fact, for the simple shear deformation (cf. Eq. (92)), both
the left Cauchy±Green tensor B (cf. Eq. (93)) and the stretching D (cf. Eq. (96)) are essentially symmetric
second-order tensors in two dimensions. As a result, the expression �2:9�3 in Xiao et al. (1997a) can be
reduced to Eq. �2:9�2 therein, i.e. the log-spin Xlog for the simple shear deformation is given by

Xlog �W� m�BDÿDB� � _x�1� 4mx2��e1 
 e2 ÿ e2 
 e1�;
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where the coe�cient m can be obtained by using Eq. (2.10) in Xiao et al. (1997a) and Eq. (94). Hence, we
have

Xlog � 1

2
_x

1

1� x2

�
� x��������������

1� x2
p

shÿ1 x

�
�e1 
 e2 ÿ e2 
 e1�: �106�

Then, by means of Eqs. (91), (96) and (106), we infer

_x� 6G2

d� 3G
�s : D

�s : �s
x � 0

with x � �s33; �s13; �s23; �s11 � �s22. Since each x, vanishes during the whole elastic process, from the above
di�erential equation for x, we infer that each x continues to vanish during the whole stage of the succeeding
elastic±plastic process. Thus, the e�ective stress �s is of the form

�s � �s11�e1 
 e1 ÿ e2 
 e2� � �s12�e1 
 e2 � e2 
 e1�: �107�
Utilizing the latter and the identity

du
dt
� _x

du
dx

for each function u � u�x�, we arrive at simpli®ed forms of Eqs. (83) and (91):

r0Y �
���
3
p �����������������

�s0 211 � �s0 212

q
; �108�

d�s011

dx
ÿ 1

1� x2

�
� x��������������

1� x2
p

shÿ1 x

�
�s012 �

.�s011�s012

�s0 211 � �s0 212

� 0; �109�

d�s012

dx
� 1

1� x2

�
� x��������������

1� x2
p

shÿ1 x

�
�s011 ÿ

�s0 211 � �1ÿ .��s0 212

�s0 211 � �s0 212

� 0: �110�

Here and henceforth,

. � 3G
d� 3G

; r0Y �
rY

2G
; �s0ij �

�sij

2G
; s0ij �

sij

2G
:

Eqs. (109) and (110) with the initial conditions (103) and (104) determine the e�ective stress components �s011

and �s012 as functions of the shear strain x. Then, Eq. (108) gives the ¯ow yield strength r0Y. In addition, the
void volume fraction / is obtained by integrating the rate equation (84). Finally, the true stress components
s011 and s012 are given by

s011 � ÿs022 � �1ÿ /��s011; s012 � �1ÿ /��s012: �111�
Various forms of the evolution relation of the void fraction volume / to the ¯ow yield strength rY are

possible, refer to, e.g. Lemaitre and Chaboche (1990). If the material parameter A in Eq. (84) is regarded as
a constant, then one can readily derive a linear relation between / and rY. Here, we assume the exponential
form

/ � 1ÿ eÿk�rYÿr0
Y
�=r0

Y ; rY P r0
Y; �112�

where k > 0 is a dimensionless material parameter. Evidently, whenever the ¯ow yield strength rY is close to
the initial yield strength r0

Y, i.e. �rY ÿ r0
Y�=r0

Y is small, the foregoing linear relation gives a good approx-
imation of the general relation (112).

Setting . � 0:9 and r0
Y=G � 0:1, we obtain the e�ective normal stress �s011 and the e�ective shear stress �s012

by means of Dormand±Prince numerical integration. Then, from Eq. (112), we obtain the void volume
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fraction / for various possible values of the material parameter k. Here we set k � 0:2. Finally, we obtain
the true normal stress s011 and the true shear stress s012 from Eq. (111).

The results are shown in Figs. 1±5, where in Fig. 1, the dimensionless e�ective shear stress is depicted vs
the shear strain x. In addition to the solution of the di�erential equations (109) and (110) for the loga-
rithmic rate, we also have presented solutions for the Zaremba±Jaumann rate and the Green±Naghdi rate,
where according to Eq. (5), we have introduced XJ �W and XGN � _RRT, respectively. It is illustrated that
both results for the logarithmic rate and the Green±Naghdi rate as well show almost linear increasing
behaviour, whereas the Zaremba±Jaumann rate tends to display oscillating properties and, for the hard-
ening parameter . under consideration, even changes the sign of the shear stress for very high strains of
about x � 8:3. As has been observed by various authors the Jaumann rate may cause physically not
plausible results.

The e�ective normal stresses vs the shear strain x are shown in Fig. 2. Here again the Zaremba±Jaumann
rate tends to display oscillating behaviour. The Green±Naghdi rate leads to an almost constant normal
stress. Only the logarithmic rate creates a monotonically increasing stress as would be expected from ex-
perimental observations.

The respective dimensionless true stresses are presented in Figs. 3 and 4. Whereas the shear stresses for
the logarithmic rate and the Green±Naghdi rate are almost identical, ®rst increasing and then decreasing,

Fig. 1. E�ective shear stresses vs shear strain.

Fig. 2. E�ective normal stresses vs shear strain.
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Fig. 3. True shear stresses vs shear strain.

Fig. 4. True normal stresses vs shear strain.

Fig. 5. Void volume fraction vs shear strain.
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with a maximum at about x � 1:2, and asymptotically tending to zero, the result for the Zaremba±
Jaumann rate again changes its sign, as for the e�ective shear stress.

In Fig. 4, the true normal stresses show physically plausible behaviour for both the logarithmic rate and
the Green±Naghdi rate, except for the Zaremba±Jaumann rate, which again leads to an oscillating re-
sponse.

The void volume fraction / vs the shear strain x is shown in Fig. 5. The results for the Green±Naghdi
rate and the logarithmic rate are again almost identical. For very large values of shear strain x, the void
volume fraction / tends asymptotically to the value 1. As has been emphasized by di�erent authors, this
indeed will restrict the validity of our fundamental assumptions.

8. Conclusion

It has been demonstrated that, by consistently combining additive and multiplicative decomposition of
the stretching D and the deformation gradient F and adopting the logarithmic stress rate, a general Eulerian
rate type model for ®nite deformation elastoplasticity coupled with isotropic damage is proposed. The new
model is shown to be self-consistent in the sense that the incorporated rate equation for the damaged elastic
response is exactly integrable to yield a damaged elastic relation between the e�ective Kirchho� stress and
the elastic logarithmic strain. The rate form of the new model in a rotating frame in which the foregoing
logarithmic rate is de®ned, is derived and from it an integral form is obtained. The former is found to have
the same structure as the counterpart of the small deformation theory and may be appropriate for nu-
merical integration. The latter indicates, in a clear and direct manner, the e�ect of ®nite rotation and
deformation history on the current stress and the hardening and damage behaviours. Further, it is pointed
out that in the foregoing self-consistency sense of formulating the damaged elastic response the suggested
model is unique among all objective Eulerian rate type models of its kind with in®nitely many objective
stress rates to be chosen. In particular, it is indicated that, within the context of the proposed theory, a
natural combination of the two widely used decompositions concerning D and F can consistently and
uniquely determine the elastic and the plastic parts in the two decompositions as well as all their related
kinematical quantities.

As an application, the proposed model is applied to derive a self-consistent Eulerian rate type model for
void growth and nucleation in metals experiencing ®nite elastic±plastic deformation by incorporating a
modi®ed Gurson's yield function and an associated ¯ow rule, etc. As a test problem, the ®nite simple shear
response of the model is studied by means of numerical integration. It turned out from these calculations
that the results obtained for the e�ective and the true stresses can represent the experimentally observed
behaviour, when the logarithmic rate is incorporated in the model. It has been demonstrated further that
the Zaremba±Jaumann rate and the Green±Naghdi rate as well may lead to a physically nonplausible
behaviour.
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Appendix A

In this appendix, some calculations related with the constitutive model describing the elastic±plastic
damage behaviour are comprised.
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For the modi®ed Gurson's yield function (Eq. (72)), we have

of
os
� 3�s0 ÿ a� � q1rF/ sh

trs

2rF

� �
I; �A:1�

of
oa
� ÿ3�s0 ÿ a�; �A:2�

of
o/
� 2q1r

2
F ch

trs

2rF

� �
ÿ 2q2r

2
F/; �A:3�

of
orF

� 4q1rF/ch
trs

2rF

� �
ÿ q1/�trs� sh

trs

2rF

� �
ÿ 2rF�1� q2/

2�: �A:4�

Introducing these derivatives into Eqs. (79), (81) and (82), yields

_rF � _k
d

�1ÿ /�rF

3s : s0
ÿ�
ÿ a
�� q1rF�trs� sh

trs

2rF

� ��
; �A:5�

_/ � _k 3q1rF/�1
�

ÿ /� sh
trs

2rF

� �
� Ad
�1ÿ /�rF

3s : �s0
�

ÿ a� � q1rF�trs� sh
trs

2rF

� ���
: �A:6�

D � D : �s
�

log � _k 3�s0
�

ÿ a� � q1rF/ sh
trs

2rF

� �
I

�
: �A:7�

Utilizing the evolution equations (74), (79) and (81), from the general formula (35), we derive an ex-
pression for the plastic multiplier _k as follows:

_k � ÿw
b

3�s0
�

ÿ a� : s
� log � q1/rF�tr _s� sh

trs

2rF

� ��
�A:8�

with

b � 3q1rF/�1ÿ /� sh
trs

2rF

� �
of
o/
� d
�1ÿ /�rF

A
of
o/

�
� of

orF

�
s :

of
os

� �
ÿ 3c tr�s0 ÿ a�2; �A:9�

where the loading±unloading indicator w is given by Eq. (36). Substituting the derivatives of =os, of =o/ and
@f =@rF given by Eqs. (A.1)±(A.4) and making use of

2q1/ch
trs

2rF

� �
ÿ 1ÿ q2/

2 � ÿ 3

2
rÿ2

F tr�s0 ÿ a�2; �A:10�

one can obtain an explicit expression for b as follows:
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